Module 1

Module 1: Introduction and foundations
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We're reading this Module and Module 0 in tandem. In “Hello, 7...” we are learning the
vocabulary and grammar of a programming language, giving us the ability to express scientific
ideas as code. This is sufficient for many projects, but it leaves many aspects of the craft of
scientific computing — aspects which are independent of whether we’re using Julia, or C++,
or Python, or... — to the side. How do we organize a project so that it doesn’t collapse under its

Figure 5.2: Robert Boyle (left) and Christiaan
Huygens (right), the two natural philosophers
involved in the earliest dispute (that I could
find) in which the reproducibility of an experi-
ment was questioned and resolved in a basically
modern scientific manner [6].

own weight as it grows? How can we actu-
ally keep a meticulous record of our work,
ensuring its reproducibility, when we are si-
multaneously running simulations and writ-
ing more code to both fix bugs and explore
new corners of our models? How do we de-
sign our computational experiments so they
are both scientifically sound but also compu-
tationally feasible? And what tools are avail-
able to make collaborating with other scien-
tists on our work easy?

This module covers the essential tools and
practices in modern computational research.
We’ll learn about version control of our pro-
grams, scripting languages for automating
analyses and simulations, the principles of
reproducible research, and fundamental con-
cepts in algorithmic complexity. This module

will ensure you can manage coding projects effectively, collaborate efficiently, and think criti-
cally about the computational resources that would be needed for different tasks.



Chapter 6

Version control with Git

Version control is a systematic way of managing multiple versions of programs, of documents,
of databases, and so on. Using version control makes working collaboratively with others much
easier. Itis also crucial for modern scientific reproducibility. Git is an extremely powerful system
for distributed version control, and it has been overwhelmingly adopted. There are numerous
guides and tutorials that will help get you up and running; my goal in this chapter is twofold.
First, I want to introduce the most common, practical subset of git commands that you’ll want
to use from day one. Second, I want to talk about how git actually works - it does not need to
be a black box, and by having a solid mental model of what happens when you use different
git commands you’ll avoid some of the common pitfalls that sometimes trip beginners up.

6.1 Gitin practice

From a practical point of view, there are two important sets of things to learn about git. The first
set is just the essential commands: How do you actually create a new “version” of your whatever
your project is? How do you go back and forth between versions or compare differences between
them? How do you synchronize your changes with collaborators? In the first subsection below
I'll quickly cover the basics™.

The second set is a byproduct of (a) git’s “branching” model of projects and (b) the fact that
git is a distributed version control system. “Distributed” here means that no copy of the project
is more or less important than any other, except by convention. This has several nice features,
but it also means there are many different patterns - often called “workflows” — for interacting
with git and using it for version control. Especially when collaborating — but even when just
working on your own code base - it is helpful to choose a consistent pattern of using git. While
there are many different possible workflows, I think there are two that are most useful for solo
projects or those involving only a small number of collaborators at a given time. I'll describe
those two after covering the core commands.

6.1.1 The core commands

Nobody likes to be told to read the documentation, but the first superpower at your disposal is

52For alternate perspectives, consider some of the many other resources out there.
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https://git-scm.com/
https://git-scm.com/about/distributed
https://www.atlassian.com/git/tutorials/comparing-workflows
https://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository
https://docs.github.com/en/repositories
https://docs.gitlab.com/ee/tutorials/learn_git.html
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$ git help [command]

Here “[command]” is, not surprisingly, any git command. The output will remind you what the
command does, what its options are, and other helpful pieces of information.

Getting started: init and clone

A repository (“repo”) is git’s fundamental unit, and each project (a paper, a codebase, a website,
etc) will live in its own repo. That repo will contain all of the files associated with that project,
each file’s complete version history, and can even contain various parallel or alternate versions
of files. You can create a new repository by moving to some directory and typing

$ git init

This initializes a repo by creating and populating a hidden .git/ subdirectory. You can also
create a new copy of an existing repo like so:

$ git clone [repository]

Here [repository] is either a URL pointing at a remote repo, or a path to a local repo already
on your computer.

Creating versions of your project: status, diff, add, commit

Git has a “stage-and-commit” model for updating repositories. You can think of commits as the
actual versions of the project you’ll be able to go back and forth between, and the “staging area”
as a rough draft space for the version you are about to commit. This staging area is different
from the actual current state of your project, which might have many changes (new or modified
files and deleted files) that are not currently staged. One reason for having this distinction is
that some workflows favor having small commits that each address some specific update to
the project, and using git’s stage-and-commit model let’s you take the many changes you may
have made during a coding session and record them as a specific sequence of project versions.
In practice, you can see the current status of your project by running

$ git status

This will give an overview of your project relative to the last version that was committed: what
files are in the staging area ready to be committed, and what files have been changed (or what
new files have been added) but are not in the staging area. If you want more granular detail
here - for instance, what lines of various files have actually been changed - you can use the
git diff command.

To actually move a file to the staging area you run
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$ git add [path/to/filename]

Turning changes in the staging area into a new version of the project is done like so:

$ git commit

By default, running git commit will open up a text editor asking you to specify a “commit
message” — this should be a short description of the changes associated with the new version
of your project.

There are many options for all of these git commands - and other commands you can use
- that make them easier to work with. For instance, if you want to add all new and changed
files to the staging area you can use git add . On the other hand, what if you add a file to the
staging area by mistake®? You can “unstage” it using the git restore command:

$ git restore --staged [filename]

This moves the file from the staging area back into the “changed but not staged” category, i.e.,
without discarding your actual changes.

If you want to skip the “let’s open up a text editor for the commit message” business you can
use a -m flag on git commit. And if you want to skip git add step for files that git is already
tracking, you can use a -a flag on git commit. This flag automatically stages all modified
or deleted tracked files before committing, but it will not stage new, untracked files. So, for
instance, after I finish writing this section I’ll probably go to the shell and do something like:

$ git commit -am "added core git commands to git.tex"

Navigating history: log, switch, and restore

After you have committed several versions of your project to the repo, you can use the git
log command to view the history of your project. By default it will list commits in reverse
chronological order, with four pieces of information for each commit: (1) a SHA-1 checksum
that serves as the commit’s identifier, (2) the author of the commit, (3) the date of the commit,
and (4) the commit message. While there are many options to make the log easier to parse, in
practice it is typically easier to view the log through a web interface - thus, the basic command
line version is sufficient most of the time.

Also, unless you’re very good at memorizing hashes, write useful messages.

Having the complete history of your project would be of only limited use if you couldn’t
actually access past versions of your project. Here we’ll use the git restore and git switch
commands. To discard the changes to a specific file in your working directory (i.e., restoring it
to its last committed state), you can do this:

33Something extremely easy to do if you go around typing git add . all the time!


https://en.wikipedia.org/wiki/SHA-1
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Figure 6.1: XKCD with an astute observation about commit messages

$ git restore [path/to/file]

This is a safe and quite common way to undo unwanted edits. If you want to more specifically
restore a file to the state it was in at an older commit, all you have to do is specify the source>*:

$ git restore --source=[commitID] [path/to/file]

If you want to restore not a single file but your entire project to the state it was in at a past
commit, you use the git switch command with a special flag:

$ git switch --detach [commitID]

The --detach flag indicates that you are entering the special “detached HEAD” state.

The detached HEAD state

When you use git switch --detach with a specific commit hash, you are asking
Git to show you your past project exactly as it was at that time; this is very useful,
but it places your repository in a special state called a detached HEAD (HEAD being
special reference for git that usually points at your current position at the end of
a branch). The crucial thing about this special state is that it does not belong to
any branch - it’s a floating reference that can and will be deleted by git’s cleanup
processes when you switch back to a real branch.
In practical terms, you need to know the following:
1. If you just want to look around, or run code from this point in time: you
are save to do so: look at files, compile code, run tests, go wild. When you’re
done, go back to any branch (e.g., git switch main).

4Replacing [commitID] with the SHA hash of the commit you are interested in.


https://xkcd.com/1296/
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2. If you want to build upon this old code: you must create a new branch to
save your work - creating a new branch from your current “detached HEAD”
state gives this point in your project’s history a name and a future. You can do
this, e.g., by git switch -c newExperimentalFeature.

A note on the checkout command

If you look at git tutorials, you’ll find a git checkout command that gets used for
many different contexts: creating branches, restoring files, moving between commits,
and so on. This one commands many different functions were a common source
of confusion, and in 2019 git introduced git switch and git restore to provide
more tailored commands for those actions. While git checkout still works (and is
sometimes necessary for advanced workflows), we’ll use switch and restore: they
make the user’s intent clearer and are safer to use.

Synchronizing clones: remote, push, pull

Using git entirely locally is itself very useful, but you will almost invariably want to synchronize
your work with a remote - these are just versions of your (or someone else’s) repository that
live somewhere on the internet (e.g., on GitHub, or GitLab, or...). If you started a repo with git
init you can connect it to a remote repository using the git remote [various options]
command; if instead you started by cloning a remote repo things will be configured to synchro-
nize easily with that remote by default. If you want you can associate arbitrarily many different
remotes with your repository - this just involves many uses of the git remote command, and
you can use git remote -v to see what your remotes are and how they are configured (read
only, read-write).

Most of the time, you’ll probably keep things simple and only have a single remote asso-
ciated with your project. In this case, once you've set the remote up synchronizing with it is
quite straightforward. To move your local commits to the remote you git push, and to take
any updates that the remote has and combine it with what you have locally you git pull.
If you want to grab all of the data the remote has but you do not want to immediately try to
combine it with what you have (perhaps you’re worried about incompatible changes you and a
collaborator may have made to a file, and want to check everything out first), you can instead
doagit fetch.

Creating parallel versions: branch and merge

Git’s branching model makes it easy to have multiple parallel versions of your project that can
develop independently from each other. It is possible because, at the end of the day, branches
are just lightweight, movable pointers to a commit - cheap to make but powerful in practice.
You can create a new branch - perhaps to experiment with a new feature, or develop such a
feature over a long time - without interfering with whatever is going on with the main part
of your project. Creating a new branch is as simple as git branch [nameOfYourNewBranch],
and switching between branches is as simple as git switch [nameOfBranchYouWant]. You
can also create a new branch and immediately switch to it in a single command:
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$ git switch -c [nameOfYourNewBranch]

Each branch can independently maintain its own version history (see more on that below),
and when synchronizing with a remote you have complete control — you can push and pull all
of your branches, a subset of them, or just have.

Eventually, you will decide that the feature you developed on some branch should be com-
bined with your main branch (for the purposes of this guide, I'll assume that your main branch
is named main - the actual name makes no difference to git). The basic way of doing this is to
use a “merge” command: assuming that you are currently on main (i.e., you’ve recently done a
git switch main) and you want to combine the work you did on a featureBranchi, all you
need to do is this:

$ git merge featureBranchl

This will attempt to replay all of the changes made on featureBranchl on top of main. If there
is a conflict that cannot be automatically resolved - perhaps incompatible changes were made
to the same file on these two branches - the merge will stop, and you will have options for
how to resolve these conflicts. I strongly recommend not beginning a merge if you have any
uncommitted changes in your project.

Pull is a combination of other commands

Now that we’ve met both fetch and merge, I can tell you that git pullis essentially
just a combination of these two other commands: fetch to get data from the remote
and merge to combine the remote branch with your local one®. This is why conflicts
sometimes happen during a pull.

%The pull command can also be configured to use a different pattern: a fetch followed by a
rebase. Rebase and merge are alternate strategies for integrating changes from one branch into
another. Using rebase - and especially its interactive version - is incredibly powerful, but it also
re-writes the history of your git repo and can be dangerous. We’ll leave this more advanced topic
aside for now.

6.1.2 Configuring git

In addition to the basic set of git commands, there are important configurational options when
it comes to setting up and using git that we should know about right out of the gate.

The firstis your global . gitconfig file, which lives in your home directory (not your project
directory), and can be created by hand or using the git config command. This needs to be
used to set the name and email that will be associated with your commits, but can also be used
to set lots of options - alias for commands you want git to use, the default editor to use when
writing commit messages when not using the -m flag, and so on.

The second is the .gitignore file, which is a per-project file located in the root of your
repo which instructs git that, by default, certain files should not be added to your repo. For


https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/resolving-a-merge-conflict-using-the-command-line
https://git-scm.com/docs/git-config
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Figure 6.2: Schematic view of a project with a centralized workflow.

instance, in a repo containing a LaTeX document you might not want to version control all
of the ancillary files that TeX generates as it compiles your document, so you might write a
.gitignore file like this:

## ignore core auxilliary files
*.aux

*.log

*.0ut

# ... other files

If you compile your TeX document (so files like this exist) and type git add . you will find
that files matching either the specific names or the patterns you have written in the gitignore
file are not moved to the staging area. You can force git to add an ignored file (using git add
-f); the .gitignore file just controls the default behavior. This is extremely useful for keeping
a clean repo, only version controlling the files for which version control is appropriate.

6.1.3 Common workflows

Patterns of interacting with git can get quite involved, especially as the size of a project and the
number of contributors to it grow. For the kind of smaller-scale projects we will be working
with, the following two simplest patterns will serve us well.

Centralized workflow

The first is usually called the centralized workflow, in which we ignore git’s branching model
altogether and have all of our project’s history linearly recorded on the repo’s main (i.e., only)
branch. Schematically, our project’s history will look like that of Fig. 6.2.

In this schematic time progresses from left to right, and I've deliberately used dots to connect
the project versions themselves rather than the arrows you might have expected. The reason
for this choice will be clear when we talk about how git stores a repository in Section 6.2, and
we realize that arrows connecting the different versions should be drawn opposite to the flow
of time.

This workflow works well for small computational projects — perhaps small analysis scripts,
or collections of related Mathematica / python notebooks — and also especially for working on
papers (which should definitely be version-controlled with a method better than saving files
with names like manuscriptDraft_v10_final_revision_v2.tex).
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Centralized workflow

For concise reference: the basic pattern of operation with this workflow is
1. Initialize the repo: git init or git clone

2. Make and commit changes: git status, git add, and git commit
3. Synchronize with the remote

« Get any changes (if you are collaborating): git pull
« Handle any conflicts, if necessary

« Push changes: git push

4. Repeat steps 2 and 3 until done.

This simple pattern uses only a handful of git commands, but is already very useful. It can
also be meaningfully thought of as a building block for more complicated ways of working
with a repo. The next example demonstrates this, where I'll use the abbreviation CWF to refer
to steps 2-4 above.

Feature branch workflow

As projects get larger, the main branch of your project using CWF can start to get cluttered
and chaotic. Perhaps you’re building a particle-based simulation framework, and you are si-
multaneously adding new forces and equations of motion and boundary conditions, all while
occasionally finding and fixing a bug or two. The commits for these additions are all interwo-
ven in your project’s history — does a particular new feature rely on a bug fix earlier in the
commit history, or not? Are the changes you needed to make to a file containing a common
simulationFramework class when working on two different features compatible, incompatible,
or completely independent from each other?

A nice pattern for encapsulating the work on separate parts of your project is called a
“feature branch workflow. It is based around having a primary main branch for your project, and
instead of committing directly to it you are encouraged to create a new branch when you want
to start working on a new feature. These feature branches get merged with the main branch
when they are ready, and then they don’t need to be touched again (again, since branches are
just lightweight pointers, there’s no real cost to having a bunch of unused (“stale”) branches
around). It looks schematically like Fig. 6.3.

I use this pattern for my open-source scientific code packages, where I want the main branch
to always (hopefully!) have working code that others can use. This is one of the main benefits
of a feature branch workflow: you can be developing and testing multiple items independently,
and the main branch can stay clean and functional. Yes, I still sometimes commit to main when
implementing a quick bugfix, but the basic pattern of “branch for a new feature, merge when
it’s done” is very convenient.



6.2. HOW GIT STORES A REPOSITORY 73

— —
featgre T o0 |feature 1
version 1 version 2
... Q..

N\ N\ N\
Main Main Main
version1 ]| ®°°®occcc000c00csscssce version2 | **** |version3

L]
° L]
° °®
— — —
feature 2 feature 2 feature 2
. eee R (XY} .
version 1 version 2 version 3
~
L
Time

Figure 6.3: Schematic view of a project with a feature branch workflow

Feature branch workflow

The corresponding basic pattern of operation is something like:
1. Start from the main branch (perhaps after some period CWF development):
git switch main.

2. Create a new branch for a new feature: git switch -c nameOfNewBranch
3. Work on that feature branch using a CWF

4. Bring your changes back to the main branch: git merge

One thing to note is that this pattern tends to favor relatively small and shorter-lived
branches, since merge conflicts get more common and can be harder to resolve the longer
a branch has diverged from main. Finally, I'll note that a feature branch workflow can itself
be a building block for more complex workflows. The complexity of your workflow should
probably scale® with the size of your project and the number of collaborators.

6.2 How git stores a repository

It helps to know about how git actually storing your project and its version history. This lets
you know what all of the commands in the previous section are actually doing, and it also helps
you correctly reason about what will happen when you make a commit, or when you want to
merge two branches. So: git is a directed acyclic graph - the nodes of this graph will be a small
number of different types of “git objects”, almost all of which can then point to other git objects
(forming the directed edges of the graph). We’ll see how this turns into a system for version
control by meeting the important git objects.

6.2.1 Blobs and trees
Blobs

>Logarithmically?


https://www.atlassian.com/git/tutorials/comparing-workflows
https://en.wikipedia.org/wiki/Directed_acyclic_graph
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The most basic git object is the blob, which represents the contents of
a file.We’ll represent them like in Fig. 6.4. k
What'’s going on here, and why have I written d23al on the blob?
When we git add a file (or when a merge changes an existing file’s
content), git reads that file into a memory buffer and uses a lossless
data compression algorithm to figure out what the compressed ver-
sion of that file is. It then prepares a file which contains a short header
followed by that compressed representation of the file. Git next calcu-
lates the SHA-1 hash of the blob, and uses the 40-hexadecimal-digit
representation of the hash value as the name of the blob file, which
then gets stored in the . git/objects/ directory (technically, git uses
the first two hex digits of the hash as a subdirectory name and the
remaining 38 digits as the file name). The header schematically looks
something like this:

Figure 6.4: A blob ob-
ject. Mr. Blobby photo
credit: Kerryn Parkin-
son/NORFANZ

blob (size of compressed blob in bytes)
(binary representation of compressed blob)

That is, it has information that this is a “blob”-type object that will be of a certain size, followed
by the compressed version of the file. I don’t want to type 40 digits for the names of blobs, so
I'll just use 5 letter/number combinations to represent these hash values, as in d23al above®.

Trees

You may have noticed that nowhere in the blob is there information about what the file is
named, or where to find it relative to your project’s root directory. Perhaps you are extremely
good at memorizing SHA-1 hashes, but the rest of us would probably like to go on using file
names and paths as usual. The next kind of object that git uses is a tree object - these are objects
who’s purpose is to point to other blobs and trees, and associate the usual information that we
think of when we work with files in a file system. In that sense they are like directories and
subdirectories. A visual representation of such an arrangement is in Fig. 6.5.

There is nothing mystical about all of these arrows pointing from trees to other objects;
schematically a tree object is represented in a file as something like:

tree (size of tree in bytes)

(mode) (blob file name) (blob objectID)
(mode) (blob file name) (blob objectID)
(mode) (tree path name) (tree objectID)

(mode) (blob file name) (blob objectID)

S6SHA-1 is a useful hashing algorithm, but it is not cryptographically secure against “collision attacks,” where
an attacker could craft two files that result in the same hash. For the purposes of version control and protecting
against accidental corruption, it remains perfectly suitable.
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That is: each tree contains a header (this
is a “tree”-type object that will be of a cer- ddocb
tain size) followed by a list of things the tree
points to. Each item in that list has a “mode”

- is it a normal file, an executable file, a sym- a README.md

src/

—

link, a type of directory, a git submodule — a

file/path name, and finally an object ID. It’s .

in the sense that the header of the object con- A |_amazingCode.cpp |
e0a74

1d28b

tains the type and ID of other objects that a
node in git’s graph “points” to another node.

A
Naturally, the SHA-1 hash of the tree ob-
ject gets used as the tree’s object ID. 8c62d
Figure 6.5: A tree object pointing at blobs and
trees

6.2.2 Commits

Thinking about the above, we see that we

could create different versions of a project by being able to point at different tree objects -
in the above image, if I could remember the dd@cb. .. hash I would be able to find the file
corresponding to that tree, and from there get all of the sub-trees and blobs that contain infor-
mation about the state of the project at that time.

Again, unless you are extremely good at memorizing SHA-1 hashes, you probably want a
new type of object for this purpose; that is what a commit object is for. The format of a commit
object is schematically

commit (size of commit in bytes)
tree (tree's object ID)
parent (parent commit's ID)

(commit information)

Yet again we have a header saying that this is a “commit”-type object of a certain size. Here that
header is followed by the relevant information about the commit. This includes the tree that
itself points to the blobs and trees that make up the state of the project, along with information
about any “parent” commits. Typically a commit will have one parent commit, but (a) the first
commit of a repository will have zero parents and (b) when merging branches a commit can
have multiple parents. Finally, there is a bunch of additional information about the commit:
the author, commit date, the commit message, and so on. Because all of this information is
used to generate the commit’s hash changing anything — even a single character in the commit
message! — will result in a completely new commit with a different hash. By now, you will not
be surprised to learn that a commit objects’ ID is just the SHA-1 hash of the commit object.


https://git-scm.com/book/en/v2/Git-Tools-Submodules
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Figure 6.6: The state of the repo after our first commit.

A sample repo over time

Bringing these three basic git object types together, let’s see what our repo looks like over the
course of a few simple commits. Below I’ll go back and forth between simple commands at the
shell and a visual representation of the repo. It is implied that whenever the shell command is
nvim [some file] I am creating or editing that file and saving it. We’ll start out simply: in a
completely empty directory let’s initialize a git repo, edit a single file, then add and commit it.

$ git init

$ nvim README .md

$ git add .

$ git commit -m "readme file created"

After this, Fig. 6.6 shows what our repository looks like.
Pretty simple: a single commit represented as a snapshot>” which points at a tree, which

points at a blob. Let’s add a little bit of complexity by adding a new file in a new subdirectory
of our project:

$ mkdir src
$ nvim src/amazingCode.cpp
$ git add .
$ git commit -m "code added"

Now our repository looks like in Fig. 6.7.

There are a few things to notice. First, as promised, the new commit points both to the
parent commit and to a tree. Second, git is happy to re-use any existing data it can: here, the
README .md file didn’t change, so the same blob object is pointed to. On the other hand, the tree
at the root of our project did change: it contains the file it already had and a new sub-tree. Thus,
the new commit cannot reuse the original root tree.

To advance one step further, what if we make a new commit that (a) adds a file and (b) edits
an existing file? Something like:

>"Depicted with a drawing of a camera obscura... It’s no “blobfish for a blob”, but it gets the job done.


https://en.wikipedia.org/wiki/Camera_obscura
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Figure 6.7: The state of the repo after a subfolder and new file are added.

$ nvim .gitigore

$ nvim README .md

$ git add .

$ git commit -m "gitignore added and readme edited"

Based on what we know, we expect the following. The src/ directory and its contents
haven’t changed, so the new commit should point to a tree that points to the same src/ tree as
in the last illustration. The root tree that the commit points to should be different, because it
needs to be a tree that points at two blobs and one tree (unlike the “one blob and one tree” root
tree of the previous commit). Finally, we should see an entirely new blob appear, corresponding
to the contents of the edited README . md file. Indeed, this is what we have (see Fig. 6.8).

8a7b2 . \ [\
“readme file ) README.md
created” 9d4bf
4 ‘ A ‘
README.md amazingCode.cpp
4f9b8 m— — —
—>
“Gode added” 4b23c 14062 A
T e43b0
README.md
“gitignore added and »
readme edited” 85b59

Figure 6.8: The state of the repo after a new file is added and an old file is edited.

It is worth emphasizing again that there are now two different blobs corresponding to the
two different versions of the README . md file in the repository. And, since both are reachable in
the graph from the 2dc75 commit, you have access to both of them. Exactly as you would hope
for a version control system.
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6.2.3 References

There is one more class of git object to meet as we finish things up, and these are git references
- HEADS, tags, and remotes. References are pointers, acting like sticky notes that can tell you
where you currently are in your project’s history, noting an interesting commit (or, in fact, any
interesting node in the graph), or noting an objectID on different clones of your project.

First: where are you currently in your project’s history, and what commit do you want to
base your next commit off of? You probably don’t want to memorize the SHA-1 hash of the
answer to this (something of a recurring theme in this section), so git maintains a list of HEAD
references (these are files in the . git/refs/ directory, one for each branch). Each of these files
just contains the SHA-1 hash of a commit object corresponding to the current snapshot of the
branch in question.

HEAD:
refs/heads/branch2
—
Feature 2 Feature 2 Continued
started progress progress

Initial E Core E Merge All bugs E ul
G fixed!

commit coding feature 1 improved

X ¥ L3 1

Tag:
Feature 1 < Feature 1 Versiogn 1.0 HEAD:
started finished ’ refs/haada/main

HEAD:
refs/heads/branch1

Figure 6.9: Schematic view of a project with HEADS and tags.

Second: you might want to have some extra mechanism for pointing at specific object in
your project’s history — perhaps the commit you want to correspond to version 1.0 of a code
release, or the first submission of a paper and then the finalized revision after you get the
referee reports sorted out — and git provides “tags” for this purpose. Basically, a tag is just a
time-stamped message that points to a specific commit. The storage format is similar to that of
a commit object; technically tags can point at anything (important blobs, or important trees),
but those use-cases are probably not something you need to worry about right now. I certainly
don’t.

A simplified view of a remote with a few branches and a tag might look something like in
Fig. 6.9.

Finally, there are remote references. These contain the object ID of the HEAD of the various
branches on your remote(s) the last time you communicated with the remote server. You will
probably not really ever need to look at these remote references (which are created in the
.git/refs/remotes/ directory when you set up a remote), but if you do and you want up-to-
date information, you’ll need to git fetch first.
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Git and compression

Git stores the contents of files in a compressed representation. For for files that have changed,
git will periodically do its best to represent these different versions not as totally independent
blobs which are mostly the same as each other. Instead it will (schematically) try to store them
as a base file and a sequence of minimal changes needed to move between different versions of
it>8. The upshot is that if your repository is mostly just text files and perhaps a few images (as it
might be for some code, or when writing a paper), you absolutely do not need to worry about
how much space and overhead git uses to implement the model of version control described
here. On the other hand, occasional changes to large files - for instance, to videos - can cause
a repo to quickly grow in size. At a minimum, every file in your project that you track with git
requires both the space for the file itself and for git’s compressed blob representation of it that
sits in the .git/ directory. For text files this is a trivial addition, but for already-compressed
video formats this might roughly double the amount of storage space you are using.

S8For full details, you can read about git’s packfiles.


https://git-scm.com/book/en/v2/Git-Internals-Packfiles

Chapter 7

Blueprints for a computational research
project

Organizing successful scientific projects often requires planning on three different levels: there
are practical nuts-and-bolts decisions to be made about the organization of its files, there are
choices that must be made about the core tools you will use and the algorithms you will employ,
and there is planning to be done in structuring the way you will use those tools to analyze data
or conduct numerical experiments. Oftentimes all of these aspects organically grow over time
with the project, but it is extremely helpful to think through each of them even before you write
a single line of code.

The first two sections below will be extremely practical: what are the nuts and bolts of
how to organize the files in your project, and how can you set up scripts that will actually run
your code in a reproducible way? This material is not complicated, but it is often simply not
mentioned at all. The last section will be somewhat more general: if the recurring theme of
this course involves the composition of algorithms and data structures to solve problems, what
are the kinds of criteria should we actually use to choose our algorithms?

7.1 Organizing your project

For many of the projects in this course — and in your own research! - you will be developing
a core set of Julia code, running it with various scripts, generating data, and then producing
plots or other results from that data. A scientific paper may or may not ensue. Given this
common pattern, it makes sense to organize each project in a broadly similar way. By doing
so, a collaborator (or a future version of yourself, after you have forgotten all of the nitty gritty
details) should be able to quickly figure out what you did in your project, and why you made
those choices.

80
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7.1.1 File organization

Some of the details will, of course, be particular to your project and the tools that you use in
it, but most of it will not be. A structure®® that handles most reasonable scientific workflows
often looks something like code block 7.1.

MyResearchProject/
— data/

|— README . nd

L — awesomeData.h5

—— plots/

L— coolPlot.png

[— research/

— README .md

— interestingDerivation.tex
(— scripts/

— README .md

— runSimulation.jl
[— src/

— MyResearchProject.jl

— (other source files, like greatFunctions.j1, etc.)
F— .gitignore

—— Manifest.toml

—— Project.toml

—— README.md

Code block 7.1: A sample structure for organizing a scientific project

Let’s break down what’s going on here. First, the directory itself has a sensible name, al-
lowing me to identify the purpose of the directory from the command line / a file explorer. The
src/ directory is where the core logic of the project lives. For a Julia project this will contain
the source files (with extension .j1l) that define your primary modules, types, and functions.
We’ll see in Chapter 5 that Julia’s package manager can generate this directory (and some of
the files in the root directory that we’ll talk about in a moment) for you.

The data/ directory is... well, a dedicated directory for the data associated with the project.
You should always save the raw data, but sometimes extremely large datasets associated with a
project might not fit nicely into this tidy directory structure (and, for instance, if you’re hosting
the repository on GitHub the files might just be too big). Processed data, and data that can be
directly used to generate plots, should probably live here.

Just one of many, of course. For reasonable alternatives that span a range of disciplines you might see, for
instance, this guide to organizing projects in computational biology, or this generic git template, or the default
project structure suggested by the DrWatson Julia package.


https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000424
https://github.com/gchure/reproducible_research
https://juliadynamics.github.io/DrWatson.jl/stable/project/#Default-Project-Setup
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Do not version control large data files!

Large data files should not be tracked by Git. Version control is for code and text,
and not binary blobs of data. Adding such files will bloat your repository, making it
slow and difficult to work with. Thus, your .gitignore file should include entries
that ignore large data files; a README . md file inside the data/ directory the correct
place to document the origin and current location of your data.

While src/ contains the reusable, library-like code, the scripts/ directory holds the “ex-
ecutable” scripts that use that code to perform specific tasks. A script might run a simulation
with a specific set of parameters, or take processed data and generate a plot for a paper. As a
rule of thumb: if it’s executable code that generates another file on your computer, you should
probably think of it as a script.

The plots/ directory is pretty self-explanatory: it’s a dedicated place for figures and other
visualizations that you generate. Like data, it is often reasonable to think of these as products
of your code and hence can be safely ignored by Git. The scripts that access the data in the
directories described above should be trivially able to regenerate plots whenever you want.

The research/ directory is where I like to keep notes, relevant derivations, to-do lists,
related papers, and so on. Think of it as a digital lab notebook for the project, containing the
messy, exploratory work that might one day inform a more polished manuscript - I want a
record of all of this work, but I don’t necessarily think all of it will end up being core to the
project. If the scope of the project is extremely clear - that is, there is no way that the project
corresponds to anything other than exactly one paper - I sometimes add a ‘paper/‘ directory
with all of the LaTeX, bibliographic information, and final figures. It is rarely so clear, and I
almost always just have a separate repository for the paper.

At the root of the project’s directory there are some configuration files and some documen-
tation. We’ll learn more about the Project.toml and Manifest.tomlin Section 5.2, and these
are specific to Julia®. There is of course a .gitignore file, which tells Git which files and
directories to ignore.

Finally, notice how this and, in fact, almost all of the directories have a README.md file.
In the root of the directory this is the “front page” of your project, and should explain what
the project is, how to install any dependencies, how to run the code, and so one. GitHub is
set up so that a readme file will be presented with nice markdown formatting if one is in any
subdirectory, though. Since having a human-readable summary is nice when navigating online,
it’s worth learning a little bit of GitHub flavored markdown for this task.

The key principle in this project structure is a separation of concerns. Source code is separate
from the scripts that run it; scripts are separate from the data they produce and the plots that
visualize it.

7.2 Planning and executing computational experiments

The scripts/ directory is where the logic of your code meets reality. What set of parameters
should I sweep over in order to solve my problem, and how large is the set of parameters that

60Tf this had been a C++ project, there might instead be a CMakeLists.txt file here, for instance.


https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax
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I actually have the resources to sweep over? Is one of those sets larger than the other? How
should you call the code you wrote in order to perform numerical experiments that are not
only robust but also reproducible?

7.2.1 Fermi estimation for your code

At the risk of being overly explicit by doing arithmetic in front of you - what follows is going
to be both extremely simple and extremely powerful at a practical level - let’s actually connect
the idea of algorithmic complexity to the practice of designing numerical experiments.

Suppose we’re running a simulation of the stars in a galaxy, and we realize that to evolve
the motion of N = 103 stars forward in time for the equivalent of 7 year takes about 3.3
seconds. We’ve also run some small tests on our code and have found that its runtime scales
quadratically with the number of stars - that is, the time taken is proportional to N2 - a scaling
that is common for direct implementations of algorithms that involve checking all pairs of
interactions. As we will formalize in Section 7.3, this scaling behavior is usually denoted using
“Big-O” notation and written O(N?); for now, all we need is the observed quadratic relationship
to make some sensible estimates.

So, with what we have so far — and assuming the runtime scales linearly with the forward
simulation time - how long will it take to simulate the motion of N = 10° stars®! for the equiv-
alent of 100 years? Our first estimate should be approximately (3.3s) x (100/7) x (10%/10%)? ~
4.714 x 107 seconds (i.e., about a year and a half). Do you have that much computer time avail-
able (and do you need to graduate before then?)? Is a simulation covering 100 years even close
to what it takes to answer your question, and do you need to find a different way of tackling
your problem?

Those are the kinds of questions whose answer depends on the science, on your resources,
and on what you can actually code up. But making these back-of-the-envelope estimates of
how long it will take to do something given the tools you already have is both a crucial skill
and is independent of those answers. In addition to using these estimates to figure out whether
you can, e.g., get something done by a certain deadline or given a certain amount of resources,
another place these estimates always come up is in determining parameter sweeps. Perhaps
you want to study how some material behaves as you control density and temperature. Even
if you know what range of density and temperature you want your simulations to span, how
many simulations should you actually launch? Can you estimate how long each simulation
will take to finish based on the asymptotic scaling of the algorithms and what you know about
how long you need each simulation to run for? Combining those estimates, and thinking about
whether you will have each simulation run independently of the others (as, for, instance, if
you were just planning on simulating the parameters on a regularly spaced grid between the
endpoints you already decided on) or not (as, for instance, if you want to use information
from one simulation to help decide what point in parameter space would give you the most
information), is a bread-and-butter part of computational research.

61Which could, perhaps, be a reasonable estimate for some dwarf galaxies.



84 CHAPTER 7. BLUEPRINTS FOR A COMPUTATIONAL RESEARCH PROJECT

7.2.2 Designing scripts for reproducibility

We often want to write functions that we will call many times as we vary key parameters of
some physical model. There is a subtle danger in the fact that Julia is a language in which it
is easy to write both robust, performant code and disposable interactive scripts. Namely: it is
so easy to iterate and quickly generate results, that it arguably requires more care to generate
reproducible results.

This can be seen by contrasting with a compiled language like C++. In such languages
there is a clear separation between being in the phase of working on code and being in a phase
of using that code: the clear separation is generated by needing to compile the source code into
an executable. Thus, a natural workflow involves working on the code itself until it compiles
and functions correctly, making sure the program can accept command-line arguments for
the parameters of interest, and then writing a script in some other language - bash or python,
perhaps - that calls that code repeatedly across the array of parameters. This leaves behind
multiple artifacts that can be version controlled and referred to later. Do you want to reproduce
exactly the results of some paper? Go into the git repo, checkout the commit where you checked
in the calling script (which will ideally also restore the codebase to its state when that script
was run!), and then run that script.

The fact that Julia’s workflow is so fluid means that we - the programmers! — must provide
the discipline that a compile-step enforces in other languages. Let’s walk through a progression
of different patterns we might use to work with Julia in the context of scientific computations.
Each pattern might be reasonable in different contexts, but we’ll see what kinds of problems
and pitfalls each might entail. All of this will use, as an example, the Julia file in code block 7.2,
which defines a simple estimatePi function that takes two parameters.

# pi_estimation.jl
# (Our Monte Carlo estimate_pi function from before)
using Random
using Statistics
generate_points(n,L) = [(rand(Floaté4,2) .*xL .-L/2) for i in 1:n]
in_unit_circle(point) = sum(point .* point) < 1.
function unit_circle_proportion(points)
return count(in_unit_circle,points)/length(points)
end
function estimate_pi(n,trials)
data = [ 4 * unit_circle_proportion(generate_points(n,2))
for _ in 1:trials]
return (mean(data),var(data))
end

\ J

Code block 7.2: The beginning of a script containing functions for a Monte Carlo estimation
of 7 (see Section 4.3).



7.2. PLANNING AND EXECUTING COMPUTATIONAL EXPERIMENTS 85

Workflow 1: The interactive session

The REPL is an essential, powerful tool for exploration, prototyping, and debugging. The chal-
lenge is in capturing the final, successful version of the process we followed in permanent
form.

Consider the following sequence of events. The very first thing we might find ourselves
doing is in the spirit of the Revise-based workflow®? we discussed in Chapter 1. Earlier in our
Julia session we had done®?

julia> includet("pi_estimation.j1")

As soon as we were happy with the state of the functions we could start generating data, for
instance

julia> first_estimates=estimate_pi(10000,15);

Do that a few times, and we’re already able to start generating a plot with data to use!

All of which is to say: in a language like Julia, the transition from writing code to testing it to
generating data is much blurrier. The instant you think you have some working code you might
start calling the relevant functions from the REPL, saving data, and so on. It feels amazing, but
how are you going to instruct someone else to reproduce that data? Do you remember exactly
what you typed into the REPL? Are you sure that you didn’t revise a function, run something
in the REPL, revise a function again, and run the same thing in the REPL, and then undo that
revision before committing to the git repo?

To be explicit, a REPL-driven workflow, for all of its power, presents two major challenges
to scientific reproducibility: provenance (what is the exact state of the code that produced a
result) and history (what were the exact sequence of commands and parameters that were run).

Workflow 2: The self-contained script

A crucial first step that solves these problems is to create a dedicated script whose sole purpose
is to run our experiment. After we create it, we add it (and the rest of the state of our codebase)
as a new commit to our repository. This gives us a permanent, version-controlled artifact that
records exactly the computation that was performed. It might look something like this:

#run_single_pi_estimation.jl
include("pi_estimation.j1")
n_points = 10000

n_trials 10

mean_pi, variance_pi = estimate_pi(n_points,n_trials)
println("Parameters: N=$n_points, Trials=$n_trials")
println("Pi estimate: $mean_pi (variance: $variance_pi)")

L J

62Even before this, I suppose, we might define all of our functions directly in the REPL. Let’s not do that.
63Qr, even better, we had written a module for our whole 77 estimation project, and we were using that module.
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Here we’ve written a script that prints the output to the screen - in a real script you would,
of course, save the data to a file. To use this script we just call it from the command line:

$ julia run_single_pi_estimation.jl

This is already an improvement over the REPL-based approach, as it leaves us with a permanent
record of what we did.

On the other hand, it is true that every time we want to run our experiment with different
parameters we have to go in and edit this file. We can avoid this - at the cost of potentially
losing out on some of the provenance of our results - passing parameters from the command
line. Julia makes this easy: when you call Julia with command line arguments those arguments
populate a global ARGS constant, and one can then parse this constant to extract information®*.

s N

#run_and_save_pi_estimation.jl
include("pi_estimation.j1")
n_points = 10000

n_trials = 10

seed = 1234 # a poor default

#fragile parsing of command line arguments
if length(ARGS) >=1
seed = parse(Int,ARGS[1])
end
Random.seed! (seed)

mean_pi, variance_pi = estimate_pi(n_points,n_trials)
filename = "./pi_N$(n_points)_T$(n_trials)_seed$(seed).txt"
open(filename, "w") do f

write(f, "$mean_pi, $variance_pi")
end

Code block 7.3: A script with very simple command-line-argument parsing.

Let’s use this to solve another problem with the above script, which is that it is not actu-
ally reproducible at all! It makes use of Julia’s RNG, and if you have your friend clone your
git repo and run the script from the precise commit in question, they will not get the same
results as you®>. We’ll learn more about this in ??, but for now let’s tentative content ourselves
with thinking that by setting a “seed” — an initial value of some sort — we’ll ensure a repro-
ducible, deterministic sequence of random numbers. Our revised script may now look like
code block 7.3.

541f you find yourself parsing command line arguments frequently, consider using dedicated packages (e.g.,
ArgParse.j1) to handle many of the details for you.
6E'Barring, of course, a coincidence of astronomical unlikelihood.


https://docs.julialang.org/en/v1/manual/command-line-interface/

7.2. PLANNING AND EXECUTING COMPUTATIONAL EXPERIMENTS 87

This embodies a few best (“reasonable”) practices. It explicitly seeds the random number
generator, ensuring that anyone that runs it with the same seed will get the same numerical
result. It can be run with default parameters:

$ julia run_and_save_pi_estimation.jl

Those parameters can be overridden from the command line:

$ julia run_and_save_pi_estimation.jl 9823475

It then saves the output to a systematically named file, so that from the filename itself we
can reconstruct what parameters were used to generate it. That is, even if we extended the
command line argument parsing to include passing in the other parameters of our experiment
—-nPoints and nTrials - and then ran everything from the command line, we would still have
a record of what experiments were actually run.

Workflow 3: The parallel-execution strategy

What we have above is already quite powerful. It would also be quite tedious - typing in varia-
tions of command line arguments over and over is both tiresome and error-prone. We could
of course just hard-code the complete set of parameters we want to sweep over, but we have
still limited ourselves to a fundamentally serial execution of our experiments. For our example
of estimating pi, each experiment is independent of the others, but we still have to wait for
each one to finish before the next begins. On modern, multi-core computers this leaves a huge
amount of computational resources we could be exploiting on the table.

Fortunately, Julia has fantastic, built-in support for multi-threading. A common pattern
would be like in code block 7.4, where we use this built-in support to perform our parameter
sweep for us. The only thing we need to tell it from the command line is how many threads to
use, for instance like this:

$ julia --threads=4 run_pi_parameter_sweep.jl

This is incredibly powerful.

By adding the @threads macro to our for loop, Julia automatically divides the work among
the available threads®®. This is a form of data parallelism, which is safe in this example because
each iteration of our loop is completely independent - each run works on its own parameters
and saves results to a unique file.

%1f, on the other hand, we set the threads option to 1 (or if we just don’t specify it at all) Julia understands
that the number of threads available is 1 and then happily returns to running the loop serially for us.


https://docs.julialang.org/en/v1/manual/multi-threading/
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Parallel programming

The simplicity of @threads is deceptive, and it should only be used in loops where
the iterations are truly independent. If they are not, you will encounter a race condi-
tion: the output of your program will depend on the unpredictable order in which
multiple threads or processes access and modify shared data. This can lead to silently
corrupted data, incorrect results, and non-reproducible errors that are extremely dif-
ficult to track down. We’re using @threads in a carefully controlled, safe context
here. True parallel programming requires much more advanced patterns.

Another caveat to using @threads is its scheduling behavior. The scheduler determines how
the loop’s iterations are assigned to available threads, and the default®’ breaks the work into
small chunks and uses a shared queue. This is a good, all-around choice that keeps threads
busy even if the work per iteration is unbalanced. Note, though, that the order in which these
small chunks are processed is not guaranteed. Two main alternatives exist. If you want slightly
stronger guarantees about which thread processes which iteration you can use the :static
scheduler (@threads :static for...), which evenly divides the iteration space and gives
each thread a large continuous chunk of work to do. For workloads with high variability from
one iteration to the next, the : greedy scheduler can be good: as soon as a thread is free it just
grabs whatever the next available iteration happens to be.

Relative paths for files

Another best practice embodied in code block 7.4 is the use of relative paths when
saving files® — you can see this in the dot slash at the start of . /data/. . .. Avoid hard-
coding directory paths if you can, so that your script will work regardless of what
computer it is run on. Note, by the way, that you can use the mkpath () function to
safely create directories so that you don’t have to worry about whether they already
exist

While building path strings works well, it doesn’t always play nicely across operating systems.
Julia has a built-in joinpath () function we can use, like so:
filepath=joinpath(".","data","pi_N$(nPoints)_T$(nTrials)_seed$(seed).txt")
This automatically uses the correct path separator (“/” or “\”) for the operating system.

Workflow 4: The managed project

Honestly, the pattern demonstrated in code block 7.4 is what I've used for the majority of my
own computational projects over the years — not necessarily in Julia, but one can easily build
up similar patterns with, e.g., bash scripts for running an executable program that might or
might not take command line arguments. Often, as you write scripts like this over an over, you
can find your self building progressively more intricate functions of convenience: perhaps a
function that will nicely generate filenames for saving data for any number of parameters you

87Which currently corresponds to typing out@threads :dynamic for...


https://docs.julialang.org/en/v1/base/multi-threading/#Base.Threads.@threads
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#run_pi_parameter_sweep.jl
using Base.Threads
include("pi_estimation.j1")

# The grid of parameters we want to explore
parameter_grid = [(1000, 100), (5000, 100), (10600, 50),
(20000, 50), (56000, 28), (166000, 20)]

@threads for (n_points, n_trials) in parameter_grid
# A simple way to get a unique seed per run
seed = n_points + n_trials
Random.seed! (seed)
mean_pi, variance_pi = estimate_pi(n_points, n_trials)

#Save results
filename = "./data/pi_N$(n_points)_T$(n_trials)_seed$(seed).txt"
open(filename, "w") do f
write(f, "$mean_pi, $variance_pi")
end
end

Code block 7.4: A script that loops over a grid of parameters, using the number of threads
available to potentially run iterations of the loop in parallel.

want to vary, or routines that perform a simulation only if the output of that simulation doesn’t
already exist®®, and so on.

There is also a kind of fragility to these kinds of scripts. The way we parse the command
line arguments is extremely fragile, requiring us to invoke all commands in exactly the right
order. We have to manually create the . /data/ directory before we run our script, otherwise it
will fail (perhaps in one of the worst ways: running all of the expensive computations but then
silently not saving any of the data because the path to the target file doesn’t exist). All of these
specific problems are, in fact, easily solvable in Julia. But the broader point is that, in fact, this
entire broader class of problem is not only solvable but already solved — we could solve them,
but this is just creeping up to the edge of re-inventing the wheel.

The specific solution you want to use here is often language (and sometimes domain) spe-
cific, so I don’t want to dwell overly long on the details of using what are known as scientific
workflow systems. It’s more important simply to know that they exist; when your project work-
flow starts becoming long enough, or you find yourself starting to write a lot of boilerplate
code in the scripts that are running your main code for you, that’s a sign you should investigate
more. In the Julia ecosystem, a commonly recommended tool is the “scientific project assistant,”
Drilatson.j1 package. It is designed to solve exactly these problems of fragile, boilerplate code:
it provides standardized functions for accessing data paths, running files from parameters, and

%Very handy, e.g., for dealing with the occasional dropped job when running thousands of simulations on a
cluster!


https://en.wikipedia.org/wiki/Scientific_workflow_system
https://en.wikipedia.org/wiki/Scientific_workflow_system
https://github.com/JuliaDynamics/DrWatson.jl
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safely running experiments, all while integrating with the reproducible project structure we
discussed earlier.

7.3 Algorithms and the logical architecture of a project

“The src/ directory is where the core logic of the project lives.” But even before we write a single
line of code in MyResearchProject. j1, we need to think about one of the most consequential
decisions in our project’s lifecycle: what set of algorithms we will use to accomplish our goals.
It is often the case that there are multiple ways to numerically implement the solution to those
goals - perhaps a “brute force” method along with an increasingly slick set of “clever” methods.
Where should we start, and how can we be quantitative about making this decision? How
should we weigh the pros and cons of using “better” algorithms with things like the amount
of time it will take us to code them, or the number of bugs per line of code we expect to have
lurking in our project?

7.3.1 Algorithmic complexity

This is just an introduction!

The field of algorithmic analysis is a deep, fascinating discipline in its own right!
It would be impossible to provide a comprehensive treatment of the subject in just
the few pages I've written here, and that is not my goal. Instead, I will introduce the
essential concepts and the vocabulary that will let us reason about our choices and
make informed decisions as practicing scientists.

Time (how long it will take to run an algorithm given some data) and space (how much
memory the computer will need) are two of the most fundamental computational resources
we need to think about. Occasionally it is useful to think of these quantities in absolute terms
- how many days will it take once I start this code for it to finish? More often, though, we don’t
really care about those questions, as they are too dependent on all of the details®°. It is often
better to ask how a particular algorithm scales with the size of the problem. For instance, if
you are simulating a galaxy with N stars and then decide you want to simulate twice as many,
how much harder does the problem get? Will the solution to a system of 2N stars take twice as
long? Four times as long? Exponentially longer? Similarly, we can ask about space complexity:
will the simulation require twice as much memory, or will the memory requirements grow
more steeply? In the following I’ll focus on the time complexity, but the memory footprint of a
chosen approach can be equally important.

In order to explain the answer to such questions, it is common to use asymptotic notation.
If we have some function which captures, say, the running time of an algorithm as a function
of the “problem size” (for instance, the number of stars we are simulating, or the number of

89What CPU does your computer have? What other processes might be running at the same time, sharing both
CPU cores and RAM?
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elements of a list we want to sort, or...), f(IN), we might write:

fN) = O(g(N)).

This means that in the limit where N — oo, the ratio f(IN)/g(N) is finite’®. Most commonly
the function g will things like a constant (O(1)), a log (O(log N)), a polynomial (O(NP)), or an
exponential (O(2N)).

This “big-O” notation is all about the asymptotic behavior of an algorithm, and there is
an important hidden prefactor (the precise ratio between f and g): it could be the case that
for a particular problem size an O(1) algorithm is actually slower than an O(N?) algorithm. It
is often also important to distinguish between the asymptotic behavior of an algorithm given
“typical” or “average-case” data to work on, vs the asymptotic behavior of an algorithm in the
worst possible case. But even with all of these caveats, understanding the asymptotic behavior
of algorithms is a crucial first step. If you are working with an O(IN) solution to your problem,
you can be confident that if you later realize you need to work with a problem which is an
order of magnitude larger you’ll be okay. On the other hand, if your solution to the problem is
0(2M) and you have the same realization...well, I hope you're prepared to be a student for an
extremely long time!

As a final comment: time and space are just two of many resources that may be important to
think about. Modern computers — not only supercomputers but also consumer laptops - have
multiple processing cores and specialized GPUs that often offer thousands of simple cores. Thus,
in modern scientific computing, the potential for an algorithm to be parallelized is increasingly
important. The potential speedup from parallelization is not infinite, and depending on the
structure of the problem can sometimes be much less than expected. Amdahl’s Law - the
seemingly obvious point that the overall performance gained by optimizing a part of a program
is limited by the amount that part gets used — can be written as

S=((1-p)+ p/a)_l,

where S is the amount the program execution is sped up, p is the proportion of time the program
spends in the section of code that is being optimized, and a is the factor by which the optimized
section is accelerated. The quantity S might be less than you expect at first glance. For instance,
if in your program you take a section of code that currently uses 75% of the computational time
and (working some real magic!) make it 10 times faster, your program will only run 3 times
faster than before. Even more extreme: if you take a section of code that currently uses 98% of
the computational time and implement a strategy that makes it run 1010 faster - blazing fast! -
your program will still only run 50 times faster than before.

These arguments apply to speeding up serial sections of code, and they equally apply to
accelerating a section of of a program by employing parallel computing resources. Because of
these constraints, the architectural choice of an algorithm need not just be a trade-off between
O(N?) and O(Nlog N); it can also be a trade-off between clever-but-sequential algorithm and
a simpler one that can more effectively harness the power of parallel hardware. We’ll explore
these concepts — and how to think about what parts of your code are actually worth optimizing

"0To be more precise, Big-O provides an asymptotic upper bound. Computer scientists also have different
notation for, e.g., tight bounds (©(g(IN))) - where f(IN) is bounded both above and below by g(IN) - and lower
bounds (Q(g(N))).


https://en.wikipedia.org/wiki/Amdahl%27s_law

92 CHAPTER 7. BLUEPRINTS FOR A COMPUTATIONAL RESEARCH PROJECT

- in more detail later in the course, but it is an important part of the modern computational
landscape to have in your head from the beginning.

7.3.2 Performance vs. Simplicity

When deciding which algorithm to use, there is often an important trade-off between perfor-
mance and simplicity. By simplicity I often mean something about how complex the algorithm
is to implement”!, and also how easy it is to establish the correctness of that implementation.
The performance of an algorithm is often reasoned about in terms of its asymptotic scaling, al-
though the constant factor hidden by the Big-O notation can be quite important. That constant
factor is, itself, often directly correlated with the simplicity of the algorithm; depending on the
problem size you are interested in, it might be absolutely crucial.

As an example of a problem where these considerations come up, consider the multiplica-
tion of two N X N matrices. 'm choosing this example because matrix multiplication is not just
a textbook exercise; it is a fundamental operation at the heart of countless computational meth-
ods. A simpler example — perhaps different algorithms to sort a list - could be used to make
the same point, but matrix multiplication is more interesting, and there are open questions at
the cutting edge of algorithmic research about how fast matrix multiplication can actually be!

The simplest matrix multiplication algorithm is one that directly implements what you
probably think of as the definition of matrix multiplication. As I'm sure I don’t need to tell you,
given matrices A and B, the i, j element of C = AB is

N
Cij = Z AikBkj'
k=1
Said another way, the i, j element of the product is the dot product of the ith row of A with the
jth column of B.

Assuming that the matrices in question don’t have any special structure (they aren’t the
identity matrix, they aren’t extremely sparse, etc), it is straightforward to analyze the asymptotic
scaling of this approach to matrix multiplication: For every element in C we compute the dot
product, which involves N multiplications and N — 1 additions. Since there are N? elements to
compute this for, we confidently say that naive matrix multiplication is O(N?). Implementing
the algorithm corresponding to this is straightforward, and the correctness of that algorithm is
easy to verify (and, indeed, extend to matrices whose shape is not square).

If you haven’t heard of Strassen’s algorithm [7] you might have concluded that matrix
multiplcation itself is O(N?3). Consider this product of 2 X 2 matrices:

(Cn Clz) _ (AuBu + A13By1 ApBip +A12322)
Cy Cxp AnBi +ApBy AnBiy +AxnB;;

This is standard matrix multiplication, and we can see that it involves 8 total multiplications
and 4 total additions - exactly as we computed above. Of course, I would have written down
exactly the same formula if each of the elements above was itself a block matrix — in which
case this is an equation with 8 total matrix multiplications and 4 total matrix additions.

"1With the caveat that some programming languages or libraries make it quite simple to use algorithms that
would be horrible to write from scratch.
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Let’s go ahead and define the following seven objects (they might be scalars, or they might
themselves be block matrices):

I'=(Ay; +Ay)(By + Byy) V=(A;; +A12)By;,
II = (Ay + Ax)Byy VI=(Ay —Ay;)(By; + By)
I = Au(Blz - Bzz) VII = (Alz —Azz)(le + Bzz)

IV = Ayp(Byn — Bi)
In terms of these, we can write the original matrix product as

C Cn\ _(I+IV—-V+VII I+Vv
(czl CZZ)_< I+1v I—II+III+VI>'

We have turned 8 total multiplications and four total additions into 7 total multiplications
and 18 total additions. If these were scalars that would be a net loss, but for matrices it could be
a massive win - naive matrix multiplication is O(N?) and matrix addition is O(N?), so reducing
the number of matrix multiplications involved is great! The real trick comes from the idea of
recursively applying this block decomposition over and over again; in the asymptotic limit this
approach to multiplying matrices has complexity O(N'°827). This might not seem like much,
but as N — oo it is a huge win’.

Clearly, though, actually implementing Strassen’s approach is much more complex than
implementing naive matrix multiplication, it requires extra memory to store the intermediate
matrices, and for small matrices it actually involves more arithmetic operations! Thus, in this
case there is a crossover in matrix scale beyond which Strassen’s approach is faster and below
which it is actually slower; the precise value of the crossover (usually estimated to be for dense
matrices with thousands of rows and columns) is also a function of the hardware the algorithms
are run on. The general lesson is that the choice of algorithm you employ should depend on
the scale of the problem you intend to solve (perhaps with some consideration given to the
range of scales you might ever consider).

7.4 Coda

The three components of project architecture discussed above are linked together. The static
organization of our files - hopefully straightforward — provides a clean, version controlled
home for our entire project. The execution architecture of our scripts determines how we carry
out the reproducible process of our scientific explorations. Together, these two components
govern the projects “health” — they determine how maintainable, extensible, and reproducible
our project will be (and whether we will be able to understand any of it a week or a month
after we work on it).

Itis the logical architecture — the algorithms we choose and the way we weave them together
— that casts the longest shadow. An inefficient algorithm cannot be saved by a tidy file structure,
and a fundamentally slow or unstable numerical method cannot be fixed by a clever execution

72Strassen’s approach is not even the best known asymptotic algorithm! At the moment the bound on how
matrix multiplication intrinsically scales is bounded by something like O(N?-371552) [3].
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script. The logical design sets the hard limits on what is computationally feasible; this leads to
some core principles for project planning.

Project planning for computational projects

1. Identify the computational core: In most projects, one or just a few parts
of the code consumer the majority of the computational time - this might be
the pairwise calculation of all forces, or the need for matrix inversion, or some
geometric calculation on your data structures. Identify the “hot loops” first;
your project’s scope will be determined by how efficient the computational
bottlenecks are.

2. Design for change: Your first idea is rarely your best, so build your code with
a modular, high-level API that allows you to swap out the core components
without having to demolish the entirety of your code.

3. Optimize what matters: Use Amdahl’s Law as your guide. Before you spend
a week optimizing a function, measure its impact. A 10x speedup on a part of
the code that only accounts for 1% of the runtime is probably a waste. Not of
your computer’s resources, but of your own time.
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