Module 111

Module 3: Random numbers and Monte
Carlo methods

135

136

When we talked about algorithmic complexity, we thought about time, space, and paral-
lelization as fundamental resources. There is another, more subtle resource: randomness. If we
allow our algorithms access to a source of random numbers, we can unlock solutions to prob-
lems that would otherwise be computationally intractable. We can think of the ability to make
a random choice as a computational primitive that, like the introduction of a for loop or an if
statement, fundamentally expands what we can easily achieve. We can trade the guarantee of
a deterministic answer for a high-quality statistical one, designing algorithms that get around
the “curse of dimensionality” by sampling the problem space instead of trying to exhaustively
explore it.

You might worry: if our computers are fun-
damentally deterministic machines, where will
we find a source of random numbers? We’ll start
this module by exploring pseudorandom number
generators (PRNGs), which are deterministic al-
gorithms that aim to produce long sequences of
numbers that appear statistically indistinguish-
able from a truly random sequence. This apparent
limitation is a benefit for scientific studies: by spec-
ifying a “seed” we can get our PRNGs to reproduce
exactly the same sequence of “random” numbers
every time. This means we can both use random-
Figure II1.1: Caravaggio’s The Cardsharps, pegs as a resource and guarantee reproducible re-
depicting the use of a not-so-random num- gy ¢s.
ber generator. (Painting: ¢. 1594. Oiloncan- with this tool in hand, we’ll cover classic ap-
vas. Kimbell Art Museum, Fort Worth. Im- pjications in physics, ranging from direct use in
age via Google Arts & Culture) estimating numerical integrals to Markov Chain
Monte Carlo (MCMC) methods for simulating particles in space or spins on a lattice. We’ll
close by combining the Hamiltonian dynamics from Module II with these MCMC methods to
build a Hamiltonian Monte Carlo algorithm and apply it to one of the central tasks of modern
science: Bayesian parameter inference.

For a deeper dive into the methods and physics discussed in this module, consider the
following references [2, 3, 49].

Chapter 11

Pseudorandomness and Monte Carlo
integration

What does randomness mean in a deterministic computer, and how can we harness this peculiar
resource to solve concrete problems? We'll first explore the first question by looking at simple
pseudorandom number generator — not because we should ever use it for research, but because
seeing how it works (and how it fails) will help us understand the nature of the tools we’re
relying on. We’ll also see, in a recurring theme, just how close we are to scraping the boundaries
of current research. The second half of the chapter will focus on a classic application that
addresses the second question. There we’ll use randomness to estimate numerical integrals
that might otherwise take the age of the universe to deterministically evaluate.

11.1 Pseudorandom number generators

A true random number generator would be a physical device that draws on a truly unpredictable
process — perhaps one that watches for the radioactive decay of a sample. These “hardware
random number generators” or “true random number generators” have a long history®. Such
devices have value, but (1) they typically produce random samples at a rate that is far too low for
our purposes and (2) by their very nature they are inherently non-reproducible. Instead, we’ll
rely on PRNGs - a combination of data and algorithm that produces a completely reproducible
sequence of apparently random numbers given an initial state. The quality of PRNGs is judged
by how well the output sequence passes a battery of statistical tests: to what extent and in which
ways does that sequence have the properties you would expect of a true RNG?

11.1.1 A simple PRNG: linear congruential generators

At their core, all PRNGs are state machines: they hold an internal state, and each time you ask
for a number they perform some mathematical operation to first update their state and then

90ne early example used a disk spinning at some high rate (which could “if necessary, be made constant to a
high degree of approximation by means of a tuning fork!) in the dark. The disk was periodically lit up so that
a human could try to transcribe the digit they happened to see every three or four seconds. This was a hilarious
method, but it was explicitly and favorably compared with selecting “random” digits from a telephone book [50].

137

138 CHAPTER 11. PSEUDORANDOMNESS AND MONTE CARLO INTEGRATION

transform that state into some output. One of the oldest and simplest of these is the Linear
Congruential Generator (LCG) [51]. It generates a sequence of integers with the following
simple recurrence relation:

Xp41 = (aX,, +¢) mod m. (11.1)

Here X, is the current internal state of the generator, and the constants a, ¢, and m are parame-
ters the describe different LCGs. The choice of these “magic numbers” is critical: poor choices
lead to a very poor quality PRNG. An example of such a generator is shown in code block 11.1 -
it uses a modulus m = 232 so that the properties of computer integer arithmetic automatically
handles the modulus operation, but this is just a convenience.

mutable struct LCG

state::UInt32

a::UInt32

c::UInt32

We'll use a modulus of 2732, and directly use '/ below
end
function LCG()

seed = time_ns() & OxFFFFFFFF

numbers from ccé65's ‘rand() function

return lcg(UInt32(seed), UInt32(16843009), UInt32(3014898611))
end

function rand_uint!(rng::LCG)
rng.state = rng.a * rng.state + rng.c
return Int(rng.state)
end
function rand_real! (rng::LCG)
rng.state = rng.a * rng.state + rng.c
return Floaté4(rng.state) / Floaté4(typemax(UInt32))
end

Code block 11.1: A simple LCG. A mutable struct holds the state and parameters of our gen-
erator, and a simple constructor uses (a) 32 bits from the current system time and (b) magic
numbers for a and ¢ (constants taken from cc65’s rand function, released under the zlib li-
cense). The rand_uint! and rand_real functions mutate the state of the LCG, and return
pseudorandom positive integers in [0, 232) and floats in [0, 1), respectively.

The memory footprint of this RNG is small - just a single 32 bits for the state and 64 bits to
hold the parameters - and the operations needed to generate random numbers are extremely
fast. For convenience I've used the computer’s internal time as the initial state of the generator
- in an actual application you would choose a specific seed (or at least have a mechanism for
recording the seed you used). Figure 11.1 shows the result of generating a few thousand real
numbers with this generator. The results in the left panel look reasonable: at a minimum, the
generator uniformly samples the space.

11.1. PSEUDORANDOM NUMBER GENERATORS

‘ ... o 2 .‘“"". 53 40410 A M LAl e 5.9 =2
:I.' 7% ..'.p. "3 . o Y 139 '. .‘.:):... r\1

| SRR | T SR ¢
o PRGOS | 1, EHEOGTHTER| Co

R e S Sty | o

.".'.'I". e .5_%. -?éz..l-#)?.‘ .‘} e 3 f& ._::. g’ i‘ﬂ‘ &0 s

:. Chd ’.‘. ..:;.:‘-... .o oo

: il YRR b oheeatetat t Tt Tt

.
0 1000
sample

1000
sample

sample

139

Figure 11.1: Samples from the LCG in code block 11.1. (Left) 2500 floating point samples,
roughly uniformly distributed in the unit interval. (Center) 2500 integer samples, again roughly
uniformly distributed in the space of UInt32s. (Right) Integer samples modulo small even
numbers, where deterministic correlations in the integer sequence is seen.

Sadly, “uniformly samples the output domain” is not the only statistical property we usu-
ally want. The flaws of this particular LCG are on display when looking at the actual integer
sequence of the internal state. Imagine using it to flip an imaginary coin; one method might be
to assign “heads” to all of the even numbers and “tails” to all of the odd numbers. The result,
shown in the right panel of Fig. 11.1, is highly suspicious (as, indeed, are all of the “modulo
small even numbers” properties of the internal state). Problems like this were particularly
problematic in early uses of LCGs for Monte Carlo problems [52].

11.1.2 Modern approaches

The precise failure mode of different LCGs depends sensitively on the magic numbers that
define them - some have fixed points or short limit cycles, eventually repeating the same output
sequence forever, some have the property of Fig. 11.1, in which not all of the bits of the state have
the same statistical properties, and so on. Better approaches might start with an LCG but add
nonlinearity in the function that maps the internal state to the output, or build nonlinearity into
the state transformation itself. It will come as little surprise, then, that different programming
languages have different default implementations for their rand function.

For isntance, python and many other languages use a “Mersenne Twister” generator [53],
whose internal state and parameters take up a relatively whopping 20032 bits, but which has a
cycle length (the number of output states that can be generated before the RNG repeats itself)
of 219937 — 1. Numpy uses a “permuted congruential generator” [54], which uses a LCG with
a power-of-two modulus but then adds a transformation between the state and the output
to maintain the speed and light footprint of an LCG while avoiding their worst statistical
properties. Julia uses the quite recent Xoshiro256++ generator [55], which takes the 256 bits
of internal state and performs particular sequences of xor, shift, and rotate operations on the
bits. I bring all of this up to emphasize that generation of random numbers continues to be an
active and evolving area of research: there are many competing demands on a PRNG - high
statistical quality, fast, minimal internal state, possibly cryptographically secure — and different
implementations balance those demands differently.

140 CHAPTER 11. PSEUDORANDOMNESS AND MONTE CARLO INTEGRATION

Do not roll your own RNG

Unless you are actively doing research on pseudorandom number generation, in
your own code just use a well-tested library implementation for your RNG. Many
a scientific “result” in the bad old days was caused by poor statistical properties or
buggy implementations of a RNG.

11.1.3 Reproducibility and Seeding

As mentioned in the module introduction, the fact that PRNGs are deterministic should be
viewed not as a flaw but an essential feature for scientific computing. By controlling the initial
state, or “seed” of a PRNG, we can guarantee that we will get the exact same sequence of
random numbers every time we run our code.

In practice, if we don’t provide a seed most programming languages will initialize the PRNG
with a source of entropy — a common choice is the one demonstrated in code block 11.1, in
which the current nanosecond count on a system clock is used. This is why a program that
uses this default will produce different outcomes each time it is run. You should think of this
as non-negotiable in your scientific work. You can set the seed for Julia’s default RNG like so:

julia> using Random

julia> Random.seed!(123321)

This will guarantee that the stream of numbers resulting from subsequent calls to rand () will
be identical®®. Explicitly setting the seed - or using a RNG to choose the seed but then recording
the value used - is a basic practice for reproducible scientific work.

11.1.4 Generating non-uniform random numbers

If we were stuck with generating pseudorandom floats and ints uniformly in some range our
toolbox would feel a bit limited. Many physical processes correspond to distributions that
are not uniform, so is there a way to directly sample from some of these more interesting
distributions?

Perhaps the most fundamental method is known as inverse transform sampling. The tech-
nique relies on the probability density function (PDF), p(x), and its corresponding cumulative
distribution function (CDF). The CDF, P(x), gives the probability that a random variable X
drawn from p(x) will have a value less than or or equal to x:

P(x)=f p(x")dx'. (11.2)

% An important caveat is that the implementation details of the RNG may change between due to bug fixes,
speed improvements, or algorithmic changes to Julia. Thus, the stream of numbers will be the same with a fixed
seed on a fixed version of Julia.

11.1. PSEUDORANDOM NUMBER GENERATORS 141

By definition, the CDF is a monotonically increasing function whose range is between zero
and one.

The key insight is that if we draw a random variable X from the distribution p(x), then
the transformed variable y = P(X) will be uniformly distributed in the interval [0, 1]. Inverse
transform sampling runs this logic in reverse: we generate a uniform random number y € [0, 1]
- which we already know how to do - and then transform that into a random number x drawn
from p(x) by calculating x = P~!(y). As long as we can analytically calculate the inverse of the
target CDF, we're done!

A canonical example of this is to generate samples from the exponential distribution. The
probability distribution itself is parameterized by A, and given by

p(x;) = dle=**, forx > 0. (11.3)

The CDF is found by directly integrating this up to x:
X
P(x) = / le= X dx' =1 — e~ (11.4)
0
Finally, we find the inverse function by setting y = P(x) and solving for x:

y=1l—e? =x :—/llln(l—y).

We now have a simple algorithm: draw a uniform random number and apply this formula. In
code (and using Julia’s built in random number generator), this is as simple as:

using Random
function rand_exp(lambda)

y = rand()

return -log(1.0 - y) / lambda
end

This technique is powerful, but it’s limited to distributions where the CDF can be easily
inverted in closed form. An example of a common distribution without this property is the
Gaussian distribution: its CDF involves the error function, which has no simple inverse. For
this and other distributions, other techniques are required. Common ones involve variable
transformation method (such as the Box-Muller transform [56], which generates pairs of uni-
formly distributed random numbers and maps them to pairs of Gaussian distributed random
numbers) and rejection-sampling methods (which work by drawing samples from simple dis-
tributions and probabilistically accepting or rejecting them to match a target distribution).
Eventually we’ll see that the distributions we’re interested in in the coming chapters are too
complex for any of these methods to work well; for now our key takeaway is that our simple
uniform PRNG can serve as the fundamental building block from which all other distributions
can be constructed.

142 CHAPTER 11. PSEUDORANDOMNESS AND MONTE CARLO INTEGRATION

11.2 Application: Monte Carlo Integration

We now turn to the second question posed at the start of this chapter: how to use random-
ness to solve a deterministic problem? One of the most classic, straightforward, and powerful
applications is Monte Carlo integration.

11.2.1 The Basic Idea: Throwing Darts

We, in fact, already did this in its basic form in Section 4.3, where we calculated 7 by “throwing
darts” at a unit square and counting the fraction that landed inside an inscribed circle. The first
generalization of this idea is to find the value of a one-dimensional definite integral, f, b f(x)dx,
by computing the average value of the function over the interval and multiplying it by the length
of the interval. The Monte Carlo approach estimates the average by sampling the function at
N points chosen at random uniformly throughout the interval:

b | N
/ f(x)dx~((b—-a)- sz(xi)' (11.5)
a i=1

11.2.2 Convergence and the curse of dimensionality

Why is this a good idea? Mathematically, the central limit theorem tells us that as long as we
have a reasonable, well-behaved functions, the error in our estimate of the average value will
behave like the standard error of the mean of a random sample. As a result, the error of our
estimate of the integral with N samples will scale as

1
Erroryc o« —. (11.6)

VN

This is an error which converges slowly: to reduce the error by a factor of 10, we need to generate
100 times as many samples. This should be contrasted with a deterministic method like even
the simple trapezoid rule. There, splitting the interval into N subintervals (i.e., in a setting in
which we perform the same number of function evaluations as in the MC estimate above), the
error scales as

rror .
E trap. (11.7)

1

Perhaps the question above should have said “Is this a good idea?” The power becomes
apparent when we move to higher dimensions. Consider integrating a polite function over a
d-dimensional unit hypercube, [0, 1]¢. The error in the Monte Carlo approach is still controlled
by the central limit theorem, and has an error which remains O(N = 2). Similarly, the error in
the trapezoid rule continues to be set by the size of the discrete subregions: we have N function
evaluations, but them must be split into a grid composed of M points along each dimension:
N = M¢<. Since the error scales like 1/M?2, we find that the error for our integral scales like
O(N~%4), Said another way: achieving a certain precision in d = 1 with the trapezoid rule
might require N = 10 points with the trapezoid rule and N = 10* points with the MC approach.
To get that same precision in 10 dimensions with the trapezoid rule would require N = 101°

11.3. IMPORTANCE SAMPLING 143

30 - 80

s0k 80

a0t 40

a0l 20

- " - -

02 0.4 0.6 08 1.0

Figure 11.2: (Left) A narrow Gaussian function (thin line) together with 200 uniformly ran-
domly sampled locations in the unit interval. (Right) The same function, but now the points
are themselves sampled from a Gaussian distribution and reweighted accordingly.

function evaluations, whereas the MC method still needs only of order 10* (albeit with a larger
prefactor, often one which scales linearly with d).

Thus, as d increases, the deterministic method becomes exponentially slower if we try to
maintain the same accuracy. This catastrophically bad scaling in high dimensions is famously
called the “curse of dimensionality.” For typical, well-behaved functions, a dimensionality of
d = 4 is the tipping point where the effectiveness of the deterministic vs random methods
flips. For the extraordinarily high-dimensional integrals that appear in fields like statistical
mechanics, MC methods are not just a better option, they are the only option.

11.3 Importance sampling

The Monte Carlo approach is incredibly powerful, but there is something a bit brute-force and,
perhaps, inelegant about how it uniformly samples random numbers in the interval of interest.
We often know at least some things about the functions we are trying to integrate, and for
functions with sharp peaks or other localized features, the majority of the N samples we use
might be “wasted” in regions where the integrand is essentially zero. Multiple evaluations of
the function in those regions don’t contribute very much to our understanding of the integral,
but they still cost computational time and slow down the convergence.

To be concrete, consider the Monte Carlo integration of a narrow Gaussian function, like the
one shown in Fig. 11.2. With the direct MC method, we randomly sample the value of the func-
tion throughout the unit interval, but only a small fraction of these samples actually contribute
to the integrand. The asymptotic scaling of the error here hasn’t changed, but the prefactor
has gotten massively worse, as our estimate of the integral is dominated by the statistical noise
from the handful of lucky “hits” when we sample in the correct region.

11.3.1 Biasing and re-weighting

We can do better by no longer sampling uniformly but instead focusing our computational effort
where it matters - the is the core idea behind importance sampling. Instead of drawing samples

144 CHAPTER 11. PSEUDORANDOMNESS AND MONTE CARLO INTEGRATION

from a uniform distribution, we instead draw them from a different probability distribution,
p(x), which puts more of its weight in regions where the integrand f(x) deviates from zero.

In order not to let this non-uniform distribution bias our estimate, we rewrite our original
integral like so:

sz%p(x)dx. (11.8)

We can interpret this as the expectation value of the function g(x) = f(x)/p(x) with respect to
the probability distribution p(x). This lets us write our MC estimator as

1 fx)
- Ni=1 p(xi),

Algorithmically, this is straightforward. We draw a sample x; from the “importance” dis-
tribution p(x), and then add the value f(x;)/p(x;) to a running sum. The 1/p(x;) is the “re-
weighting” factor that corrects for the biased sampling by giving less weight to samples drawn
from high-probability regions and more weight to to the rare sample drawn from low-probability
regions. This is visualized in the right panel of Fig. 11.2 — we again draw 200 points but now
from a narrow Gaussian distribution close to our target distribution, and re-weight those points
accordingly. The resulting estimate is, in fact, on average much closer to the correct answer for
a fixed number of samples.

Why is this better? The goal of importance sampling is to reduce the variance in our esti-
mate. A low-variance estimator is one that converges quickly to the correct answer with few
samples, and it can be shown that the variance of our estimator in Eq. (11.9) is minimized with
a particular choice for our sampling distribution:

_ e
pideal(x) - f |f(x)| dx’

This equation says that the perfect sample distribution is the one proportional to the absolute
value of the function we are trying to integrate. In the case where f(x) itself is non-negative, it
even tells us that we could get the exact answer with a single sample!

Remarkable, but also perhaps a bit circular? Of course, that’s only because constructing
this perfect sampling distribution requires knowing how it is normalized, /' | f(x)| dx, and this
is basically the integral we are trying to estimate in the first place. Thus, the are of importance
sampling is not finding the perfect distribution, but to choose a simpler distribution p(x) that
(a) we can easily sample from and (b) mimics the shape of our original function better than a
uniform distribution does.

where Xx; is drawn from p(x). (11.9)

(11.10)

11.3.2 The bridge to statistical physics

This insight leads directly to the heart of computational statistical mechanics. Calculating
a thermodynamic observable for an equilibrium system corresponds to a evaluating a high-
dimensional integral over all possible states of the system. For a system at temperature T, the
probability of being in a particular state u with energy E(u) is given by the famous Boltzmann
distribution,

p(u) o e PEW), (11.11)

11.3. IMPORTANCE SAMPLING 145

where B = (kgT)~L. Let’s heuristically think of this as the ultimate importance distribution,
provided to us by nature itself. It tells us that the important states - the ones that contribute the
most to any thermodynamic average — are the low-energy states. Our goal, then, is to perform
a Monte Carlo calculation by drawing samples from this distribution.

And yet, for any non-trivial system, the space of possible states is unimaginably vast -
considering a collection of N particles in a box of volume V, every different arrangement of
particles in that volume is its own state. The volume to the power of avogadro’s number is a
terrifyingly large number, and that’s before we say anything about the momentum degrees of
freedom in the system. How could we possibly draw independent samples directly from such
a high-dimensional monstrosity? In a related challenge, the normalization constant for the
Boltzmann distribution is the partition function,

Z =Y ePEW, (11.12)
)%

Sum over all of the immense number of these states? How?

This all seems... hard. How will we perform importance sampling with a distribution we
don’t know how to sample from, and whose normalization constant we can’t hope to compute?
This is the problem that the Metropolis algorithm [38], and the field of Markov Chain Monte
Carlo (MCMC) was invented to solve - that’s what we’ll turn to in the next chapter.

Chapter 12

The Metropolis algorithm

In the previous chapter we ended with a powerful but puzzling idea: the key to Monte Carlo
integration is importance sampling — a way of focusing our computational effort on the “impor-
tant” regions of a problem - and the optimal distribution to use for the importance distribution
is one which already contains information about the very integral you are trying to perform.

For a system in thermal equilibrium nature hands us the Boltzmann distribution, p(u) o
e PEM To calculate any thermodynamic averages for our system we need to draw samples
from this distribution, but how? It is defined over a state space of terrifyingly, stare-into-the-
abyss large dimensionality. We typically cannot even calculate its normalization constant (the
partition function Z), let alone draw independent samples from it

This chapter introduces a solution which is a workhorse of computational statistical physics:
the Metropolis algorithm. This is a brilliant method that lets us generate a sequence of states that,
in the long term, correctly samples from the Boltzmann distribution even without knowing
Z. We'll first develop this algorithm from first principles, and then apply it to canonical model
systems.

12.1 Markov chain Monte Carlo

The conceptual leap is actually to abandon the idea of drawing independent samples altogether.
Instead we will try to construct a random walk — which we’ll call a Markov chain - that explores
the state space of our system. A Markov chain is a sequence of states in which the next state
depends only on the current state (and not any of the states that came before); it is a “memory-
less” process. The challenge will be to design the rules of the random walk so that, in the long
run, the fraction of the time the system spends in any particular state u is directly proportional
to the true probability of being in that state, p(u).

The idea of constructing these memoryless sequence of states goes back to the work of
Markov in the early 20th century [57]. In an early application, Markov analyzed 20000 charac-
ters from the writing of Pushkin’s poem Eugene Onegin [58]. His method was to first define the
“states” of his system - is the current character a vowel or a consonant — and then empirically
measure the probability of moving between them. This creates a transition matrix, T, where
T;; is the probability of transitioning from state i to j.

For example, we can analyize the complete works of Shakespeare to construct the transition

146

12.1. MARKOV CHAIN MONTE CARLO 147

To a e i o u C
From
= 957 1176 12809 404 4429 292 308
312083 312083 312083 312083 312083 312083
e 15519 7881 19777 5527 621 127587
162506 162506 487518 243759 81253 162506
. 4179 5619 297 5166 277 237867
= 136025 136025 54418 136625 27205 272050
o 1178 571 1228 7211 60179 12353
83535 66828 83535 167 670 334140 16767
7 6 5581 594 852 159 124423
217 137795 27559 137795 137795 137795
c 82563 13425 76699 297676 66532 1242688
842369 76579 842369 2527107 2527187 2527107

Figure 12.1: The transition matrix between some vowels and any consonant, as determined by
analyzing the complete works of Shakespeare [61]. The entries of the dominant eigenvector
predict the empirical distribution of vowels and consonants in the source within a precision of
10~7. However, a random walk using this matrix produces samples like: “gsfsaedptoawfjtgxiiz.”
Very poetic, but also demonstrative of the fact that the model captures “equilibrium statistics”
but not the long-range correlations of real language.

matrix shown in Fig. 12.1, which shows the probability of transitioning in the text from the
vowels {a, e, i,0,u} to each other or to any consonant. If we represent the current state as
the probability vector (e.g., the vector {1,0,0,0, 0,0}, corresponding to “the current state is
definitely the letter a”), we can find the probability of the next state simply by multiplying by
the transition matrix. The power of the Markov chain is that is we apply this matrix repeatedly,
the state vector will inevitably converge to a unique stationary distribution — a vector that no
longer changes upon further multiplication by T. This stationary distribution is, by definition,
the dominant eigenvector of the transition matrix [59, 60] and, as Markov showed, it almost
perfectly predicts the overall frequency of vowels and consonants in the text.

This result is both powerful and surprising. As the gibberish in the caption shows, our
simple Markov model has failed to learn much about the actual structure of the English lan-
guage. But it has perfectly succeeded at a more narrow task: finding the correct equilibrium
distribution of the characters themselves. This is an important lesson: the Markov chain may
not be a perfect replica of the system; it is a carefully crafted tool designed to reproduce some
of the correct statistical properties in the long time limit.

The process illustrated above - using a Markov chain to generate samples from a Monte
Carlo calculation of some property - is known as Markov Chain Monte Carlo (MCMC). To
emphasis again: we will construct a simulation in which the state at step n+ 1 depends only on
its state at step n, and not on the full history of the trajectory. The central task will be to define
transition probabilities, T(u — u") for moving from state u to state u’. This set of probabilities
must be carefully crafted so that the stationary distribution of the Markov chain (i.e., the
distribution of states it settles into after running for a long time) is precisely the Boltzmann
distribution.

148 CHAPTER 12. THE METROPOLIS ALGORITHM

12.1.1 Engineering the stationary distribution

We’re making progress, but there are still major questions here. In the case of letter transition
probabilities we just empirically measured the transition matrix - this was a descriptive model.
But how do we turn a similar idea into a prescriptive method, in which we do not just measure
but design transition rules that will guarantee the stationary distribution matches the target? A
full treatment, along with the actual conditions under which this whole machinery will work,
would require a deep dive into the theory of ergodic Markov chains. Instead, we’ll think through
some clear necessary conditions, and the physical shortcut that will make our algorithmic
approach more tractable.

One condition that must clearly be satisfied is the condition of global balance. Suppose you
already have a stationary distribution, in which the probability of observing your system in
state i perfectly matches the true equilibrium probability, which we’ll denote 7;. In order for the
continued application of the transition matrix not to take you away from the stationary distribu-
tion, the total flow of probability into and out of each state must be balanced: mathematically,
global balance corresponds to

2 Tijm = 7 = Z Ty 7y (12.1)
i k

This is a very general kind of “no net flux of probability” condition, but it is in general hard to
use to to actually build the transition matrix.

We can make our life easier by imposing a stricter requirement: rather than having this
global balance of inflowing and outflowing probability, we demand that the total flow of prob-
ability between every pair of states is balance. This detailed balance condition - which clearly
also satisfies the demands of global balance - is

Markov chains satisfying detailed balance are called reversible Markov chains. And indeed,
when modeling physical systems with microscopically reversible dynamics, there is a natural
justification for adopting the additional constraints that detailed balance imposes.

12.1.2 The Metropolis-Hastings algorithm

With that as background, let’s return to our target of studying thermodynamical systems that
can reside in microstates u. Although there is a relationship, the approach we’re about to
outline marks a fundamental shift from the importance-sampling strategy. As we’ll see, the
Metropolis [38] algorithm gives up on the idea of drawing independent samples from a simple
distribution and then reweighting to correct for bias; instead it provides a way to generate a
sequence of correlated samples drawn directly from the correct, complex distribution.

So: the Metropolis algorithm splits the task of constructing the transition rule T(u — u’)
into two steps: a proposal and an acceptance/rejection step. The proposal step selects a potential
new state, u', starting from the current state u. This is done according to some probability
distribution g(u — w'). For many physical problems we have the luxury of choosing simple
symmetric proposal distributions — uniformly randomly picking a spin to flip or a particle
to displace, for instance — and for such distributions we have g(u — u') = g(u’ — w). The

12.1. MARKOV CHAIN MONTE CARLO 149

next step decides whether to accept the proposed state update or not, which happens with
probability A(u — u').

In combination we have a total transition probability of T(u — u') = glu —» u')-A(u — u').
Substituting this into the detailed balance condition for a symmetric proposal distribution gives

Alp = w) _ pW)
A = wp) p)’

p(u)-glu — u)-Alu - p') = p(u')-gu' = W)-A' - u) = (12.3)
That is: for this subdivision of the problem, imposing detailed balance corresponds to a condi-
tion on the ratio of the acceptance probabilities.

A brilliantly simple choice was made by Metropolis et al.:

p(u’)) ’ (12.4)

p(u)

i.e., proposals to more probable states are always accepted, and proposals to less probable states
are accepted some of the time®” Intuitively, this is a strong starting point: such a Markov chain
can easily get near local minima, but also with some probability escape them and explore the
entire state space.

For our physical system and for nature’s importance function, p(u) = exp(—BE(u))/Z, the
ratio of probabilities is

A(u — ') = min (1,

p(’) _ ze_ﬁE(“,) _ o—BAE
p() _ Z eBPE® '

The partition function which we didn’t know in the first place cancels out, leaving us with a
powerful result: the acceptance probability depends only on the change in energy, which is
often a local and easily computable quantity.

This simple acceptance rule represents an interesting shift in our strategy relative to the
importance-sampling problem we ended Chapter 11 with. There, direct importance sampling
required us to draw samples from a simple distribution, q(u), and reweight them to evaluate an
integral. In the context of computing ensemble averages with respect to a Boltzmann weight,
(A(w)) = S A(u)p(u) du, a resulting estimator would be

1 A(u)p(y;
QLS —(‘;()/fig“),

The problem is that, well, we have no good way to draw independent samples from p(u) itself,
and no idea of a good, simple q(u) to sample from instead.

The Metropolis algorithm solves this problem with a very different strategy. Instead of
asking, “How do we choose a reasonable q and then correct for sampling from the wrong
distribution?”, it provides a mechanism for generating correlated samples {u;} that are drawn

9The assumption of a symmetric proposal distribution is the distinction between the original Metropolis
algorithm and the more general “Metropolis-Hastings” algorithm [62]. The Hastings generalization allows for
asymmetric proposals by modifying the acceptance ratio we’re about to derive to include the proposal probabilities,
with an acceptance ratio given in Eq. (13.1).

150 CHAPTER 12. THE METROPOLIS ALGORITHM

directly from the true distribution. It achieves the “ideal” sampling scenario, and our estimator
for any thermodynamic average becomes a simple, unweighted sum:

1 N
Ay » 5 D Aw). (12.5)
i=1

The price we pay is that our samples are no longer independent; this introduces subtleties we
will address in the next section. But with that said, we can now state the complete algorithm
for our Markov chain:

1. Start in state y; with energy E(u;).
2. Propose a trial move to a new state u’.
3. Evaluate AE.

4a. If AE < 0, accept the move: y;,; = u'.

4b. If AE > 0, generate a uniform random number r € [0,1). If r < e~ BAE accept the move:
Uiri = M. If not, reject the move and set u;, = y;.

5 . Repeat.

12.2 Case Study I: The Ising model

For our first case study using the technology above, let’s study the Ising model, which is typically
introduced as a toy model for magnetic systems. Schematically depicted in Fig. 12.2, the Ising
model consists of a set of N spins, u = {s;}. There are 2V possible states x, and so clearly for a
lattice of even quite modest size there are more states than we could even enumerate, let alone
actually actual work with. This is a canonical use case for MCMC-based sampling: we’ll use the
Metropolis algorithm to generate a sequence containing a tiny fraction of the possible states,
but we will generate them with the correct distribution of probabilities.

These spins interact with their neighbors, and may also be coupled to an external magnetic
field. The Hamiltonian governing the spins is

H = —JZ SiSj - hz Si, (126)

(i) i

where J determines the strength of the spin-spin interaction, & is the external field, and)’ @i
indicates a sum over all spins i and j that are neighbors of each other. This model has many
variations”®, but for now we will focus on the simplest case of nearest-neighbor spins with
constant J on a hyper-cubic lattice.

%Is J the same for all pairs of spins? What lattice do the spins live on? Should neighbors only be nearest-
neighbor, or should we include other interactions?

12.2. CASE STUDY I: THE ISING MODEL

A4

> €

A4

A4

> €

> €

151

Figure 12.2: (Left) A schematic representation of the square lattice Ising model. (Right) On
each site “spins” are either up or down, corresponding to s; = *1. Sites with a bond between

them are included in the term which sums over neighboring sites in the Hamiltonian.

The Ising model

Although seemingly simple, this model is connected to some of the deepest insights
in 20th century physics. It was introduced by Wilhelm Lenz [63], and Lenz’s stu-
dent’s dissertation constructed the exact solution for a one-dimensional lattice [64].
Ising stopped doing research, partly because he thought he had proved that the
model he spent so much intellectual effort on had no physical relevance®; only much
later in life did he find out that this model had become incredibly influential and,
indeed, a cornerstone that helped build modern statistical physics.

%His career was also tragically cut short by religious persecution. He was forbidden from teaching
and conducting research, fled Germany, and performed forced labor dismantling the Maginot line
railroad before eventually emigrating to the US [65].

12.2.1 A top-down design

Let’s implement a Metropolis Monte Carlo simulation of the simple Ising model on a hyper-
cubic lattice, but lets do so in a way that anticipates some of the natural ways we might want
to extend it. Just as in Chapter 8, we’ll think about a flexible top-down design: we’ll first think
about how we want to structure a single metropolis_step!, and what that design contract in turn
guides the rest of our lower-level implementation. Throughout we’ll lean on multiple dispatch
to write general code that nevertheless efficiently specializes on the particular structures we
want to work with.

We begin by thinking through what the general statement of the Metropolis algorithm tells
us we will need. Clearly we will need something for the state of whatever system we have under

152 CHAPTER 12. THE METROPOLIS ALGORITHM

study, and we will need a way of implementing the proposal function, g, that can suggest a
state i’ given the state u;. We also need a way of calculating differences in energy - and hence
energies in the first place, and then an implementation of the acceptance function A. Without
even knowing that we have a lattice model in mind, we can already directly write this high-level
description:

function metropolis_step!(system, hamiltonian, move::AbstractMCMove;
B=1.0)
trial_move_info = propose_move(system, hamiltonian, move)

AE = calculate_AE(system, trial_move_info, hamiltonian, move)

if AE <= 0.0 || rand() < exp(-B * AE)
accept_move! (system, trial_move_info, move)
end
return nothing
end

Code block 12.1: A possible implementation of a general step in a Metropolis Monte Carlo
simulation.

12.2.2 System data structures

As before, the very first thing our high-level API tells us we need is a “system,” and we could
go in many different directions here. This is a key point in our work where we could try to
write hyper-specialized code for the square lattice Ising model above, or try to write something
extremely generic but not necessarily particularly performant, and so on. In this case, let’s
allow ourselves to be guided by the knowledge that we’ll certainly be studying lattice-based
spin systems, but we also have spent time thinking about particle based systems. It might be
interesting to be able to compare both an ODE- and Monte-Carlo-based approaches to a particle
system, so even though this case study is for a lattice model, let’s make sure we can handle
different types of systems.

Not a problem. Let’s begin by setting up some basic lattice functionality, and then build a
system on top of that foundation. We’ll start with an abstract lattice type, and some of the basic
functions we will be sure to implement for any concrete lattice we want to study:

abstract type AbstractlLattice end

function num_sites(lattice::AbstractLattice) end

function neighbors! (lattice: :AbstractLattice, site::Int) end

Here we see the first concession to generality: in a fixed lattice there might not be a need for
neighbors! function: the neighbors of each site in the lattice are fixed forever! Why, then, are

12.2. CASE STUDY I: THE ISING MODEL 153

we defining a mutating function? It’s because if we want to use our code to also work for a
dynamical particle system, our eventual calculate_AE function needs an interface that can
work for systems whose neighbors can change at every time step. This is a real-world design
trade-off that both illustrates the “meet-in-the-middle” design process and the potential cost of
abstraction: do we prioritze maximum performance for a specific case, or do we build a more
general interface that can be reused for other problems?

struct HypercubiclLattice{D} <: AbstractLattice
dims: :NTuple{D, Int}
neighbors::Vector{Int}
neighbor_list::Vector{Vector{Int}}

end

function HypercubicLattice(dims::NTuple{D, Int}) where {D}
N = prod(dims)
neighs = Vector{Int}(undef,2xD)
neighbor_list = [Vector{Int}() for _ in 1:N]
cartesian_indices = CartesianIndices(dims)
linear_indices = LinearIndices(dims)
for i in 1:N
current_idx = cartesian_indices[i]
for d in 1:D
for offset in (-1, 1)
mod_offset = modl(current_idx[d] + offset,dims[d])
neigh_idx = Base.setindex(current_idx, mod_offset, d)
push! (neighbor_1list[i], linear_indices[neigh_idx])
end
end
end
HypercubiclLattice{D}(dims, neighs,neighbor_list)
end
num_sites(lattice: :HypercubicLattice) = prod(lattice.dims)

function neighbors!(lattice: :HypercubiclLattice, site::Int)
lattice.neighbors .= lattice.neighbor_list[site]
end

. J

Code block 12.2: A concrete Hypercubic lattice with precomputed nearest neighbors. Please
forgive the abuse of consistent indentation — I wanted all of these lines to fit onto a single line
of text in these notes.

Code block 12.2 gives an implementation of a lattice of fixed (nearest-neighbor) topology
that, nevertheless, is optimized to compute nearest-neighbor lists without allocations®.

“Whether this is, in fact, the optimal approach might depend on the details. Perhaps precomputing neighbor

154 CHAPTER 12. THE METROPOLIS ALGORITHM

This is most of the work we need to do for now; with a lattice defined we can set up a simple
system of spins that includes both the spins (of different possible types!) themselves and the
lattice they live on.

abstract type AbstractSystem end

struct SpinSystem{T, L <: AbstractlLattice} <: AbstractSystem
spins::Vector{T}
lattice::L

end

12.2.3 Monte Carlo moves

Next we could tackle the Hamiltonian and the corresponding energy function (which is the next
argument in the metropolis_step! function), but since it’s needed on the first line let’s look
ahead to the move: : AbstractMCMove and propose_move functions. We discussed earlier that
there is a tremendous flexibility in what the proposal function g in the Metropolis algorithm
can actually be: it could propose completely new states uniformly regardless of the current
state of the system, or it could propose the most minor changes to the current state, or anything
in between. The choice will strongly influence how quickly the sequence of states converges to
the stationary distribution, and how correlated the sequence is, but choosing a good proposal
function is part of the art of Monte Carlo methods. We’ll make sure we set up the technology
to implement different proposed types of state changes, and then concretely implement the
simplest possible MC move for an Ising model: picking any single spine and flipping its sign.
The types might look like this:

lists is better, or perhaps using the logic of the lattice to recompute neighbor indices on the fly is better than memory
lookups. As always, if you are interested in this level of optimization you should measure and benchmark.

12.2. CASE STUDY I: THE ISING MODEL 155

abstract type AbstractMCMove end
struct SingleSpinFlip <: AbstractMCMove end

struct SpinFlipInfo
index::Int
end

function propose_move(system::SpinSystem{T}, hamiltonian,
move: :SingleSpinFlip)
random_index = rand(1:length(system.spins))
return SpinFlipInfo(random_index)
end

function accept_move! (system::SpinSystem{T}, move_info::SpinFlipInfo,
move: :SingleSpinFlip) where {T <: Integer}
system.spins[move_info.index] *= -one(T)

end

You can see that, while we were at it, we defined not only the idea of a “single spin flip” MC
move, but also the information that gets returned from the propose_move function, and what
it would mean to accept a proposed move.

12.2.4 Energy calculations

All that remains for a complete implementation are the structures that encode a Hamiltonian
and the functions that compute energy differences! For the first, we can set up a standard type
hierarchy of abstract and concrete ways of calculating the energy — concrete Hamiltonians are
where we’ll store the parameters themselves — along with the function we’ll need to implement
for each concrete type:

abstract type AbstractEnergy end

function we'll need to define for each concrete Hamiltonian:

function calculate_AE(system::AbstractSystem, move_info,
h::AbstractEnergy, move::AbstractMCMove) end

For our nearest-neighbor Ising model, the corresponding concrete struct and implementa-
tion of the AE calculation when a spin is flipped is shown in code block 12.3.

And with that, we’re done! We have a complete, still efficient implementation of a Metropo-
lis simulation of the Ising model on a hypercubic lattice. It may have taken us slightly longer
to build this than the monolithic script would have been, but still: in less than 100 lines of code
we have a structure that, as we’ll see in the next case study, is actually very easy to generalize
to other systems!

156 CHAPTER 12. THE METROPOLIS ALGORITHM

struct IsingHamiltonian{T} <: AbstractEnergy
J:o:T
h::T

end

function calculate_AE(system::SpinSystem, move_info::SpinFlipInfo,
ham: :IsingHamiltonian, move::SingleSpinFlip)
neighbors! (system.lattice, move_info.index)
spin_i = system.spins[move_info.index]

neighbor_sum = sum(@view system.spins[system.lattice.neighbors])
AE = 2.0 % spin_i * (ham.J * neighbor_sum + ham.h)
return AE

end

\ J

Code block 12.3: A concrete IsingHamiltonian structure, and the corresponding (fairly sim-
ple!) calculation of how much the energy changes when a spin is flipped.

12.2.5 Analyzing MCMC data

We have a nice, modular framework, and running this simulation will produce a long sequence
of states, {ug, M1, U2, --.}. The central promise of the Metropolis method is that after a long
enough number of iterations this sequence is a representative sample from the Boltzmann
distribution. But how do we actually turn this raw sequence of microscopic configurations into
meaningful measurements for macroscopic observables, such as the average magnetization
(M)? The naive approach would be to calculate the magnetization M = Zf\r s; for every state
in our sequence and take the average. This is dangerously wrong.

The first problem is the same one we encountered in our particle-based simulations. Our
simulation began from an artificial initial state — artificial because we probably did not pick a
representative configuration that has a high likelihood of appearing in the steady-state distri-
bution. As the simulation runs, the system must “relax” or “thermalize” as it moves from this
unusual initial state to a statistical steady state. If we were to include this early set of states in
our average, the memory of the initial conditions would bias the final result, but the solution
is simple: as before, we discard these initial samples. As before, the standard practice is to mon-
itor a bulk observable as a function of the number of Monte Carlo steps, measure a timescale
associated with the decay of this observable to its equilibrium value (Fig. 10.3, and discard all
states in the first several multiples of this time scale.

The second problem is more subtle. After discarding the initial equilibration data, it would
be tempting to take the remaining samples and then calculate the average and standard error of
the mean. But this is also wrong: by their very construction, Markov chains generate a sequence
of correlated states'®. For instance, in the single-spin-flip version of the code above, state u;,;
is either exactly the same as state u;, or it is different in the value of exactly one spin.

101ndeed, this is a live issue when studying molecular dynamics: configurations separated by a short time are
also highly correlated with each other.

12.2. CASE STUDY I: THE ISING MODEL 157

1.0F |

0.5}

CM (t)

0.0}

0 500 1000
MC sweeps

Figure 12.3: The autocorrelation function in the two-dimensional Ising model with J = 1,
h = 0, at various temperatures, as measured via MC simulations on a 50 X 50 lattice.

These are hardly independent samples, and if treated them as independent we would radi-
cally underestimate the true statistical error in our measurements. That is: our error bars would
be meaninglessly small, leaving us with a completely false sense of precision.

Instead, we have to actually (again) measure how long the memory of a typical state in the
sequence persists. We can quantify this with an autocorrelation function, C(¢), associated with
some observable. For an observable like the magnetization, M(t), we can define the autocorrela-
tion Cy,(t) by first defining the average (M), where (...) means to average over all configurations
at time ¢, within equilibrated set. We then define the instantaneous fluctuation of the observ-
able, SM(t) = M(t) — (M). Finally, we measure the correlations of these fluctuations, which
are then typically normalized so that the function begins at one:

(6M(tg)SM(ty + 1))

Cp(t) == (@M ,

(12.7)

Figure 12.3 shows a few such autocorrelation functions at different temperatures in a two-
dimensional Ising model

This function measures how correlated the fluctuations in magnetization are with them-
selves, separated by a “time” of t MC steps. We have normalized the function so that C(0) = 1,
but that is just a convention. Such functions typically decays exponentially'®!, giving us a char-
acteristic autocorrelation time 7. This is, roughly speaking, the number of MCMC steps we
have to take before the system has “forgotten” an earlier state, and thus after which we can
imagine that we have gathered another independent sample for our measurement.

The practitioner’s analysis pipeline

Putting this all together, we have the following very standard pattern:
1. Generate: Run long MCMC simulations, saving the state (or the observables
you care about) frequently.

.

101perhaps you are detecting a theme, here

158 CHAPTER 12. THE METROPOLIS ALGORITHM

2. Equilibrate: Plot the observable versus the number of MC steps, identify the
equilibration time ¢.,, and ignore all data generated before this point in the
following.

€q’

3. Decorrelate: Calculate the autocorrelation time, 7, for the remaining equili-
brated data.

4. Decimate: Create a smaller data set of effectively independent samples by
taking data points from the equilibrated trajectory only every 7 (or every 27,
or every 37, etc).

5. Evaluate: Calculate the average and the standard error of the mean only on
this final data set.

12.3 Case Study II: Particle-based systems

While spin systems are a canonical use case for Metropolis Monte Carlo, the algorithms is much
more general. We can apply the exact same MCMC machinery to the kinds of particle-based
systems we studied in Module II, providing a powerful alternative to the molecular dynamics
methods we developed there.

The goal, here, is fundamentally different. In MD we integrated the equations of motion
to follow the true, physical evolution of the system over time, generating a trajectory. In MC,
our goal is to correctly sample the equilibrium distribution of configurations. The sequence of
states in an MCMC simulation is a carefully constructed random walk through phase space,
and not a physical path. While we often talk about “Monte Carlo time” - typically the number
of Metropolis steps taken - this is merely a measure of computational effort and not a faithful
representation of the dynamics of the system over actual time.

Part of the beauty of the modular framework we have built is that we can implement this
entirely new simulation paradigm by reusing almost all of our existing code. The logic for
particle data structures, periodic boundary conditions, and potential energy calculations from
Chapter 10 can and should be directly reused. With that as a foundation, we only need to write
a few new methods to define the Monte Carlo “move” in this case, and we’ll have a complete,
functional simulation.

12.3.1 Implementation details

First, we define our ParticleSystem and Partictle structs exactly as we already have. We’ll

even make the decision to keep the velocity field in the particles; while it will go unused in

our pure MC simulation, keeping the data structure the same ensures compatibility'?2.

192 And allows for future extensions, such as “hybrid Monte Carlo” methods [66].

12.3. CASE STUDY II: PARTICLE-BASED SYSTEMS 159

struct Particle{D,T}
position::SVector{D,T}
velocity::SVector{D,T}
mass::T

end

struct ParticleSystem{D,T} <: AbstractSystem
particles::Vector{Particle{D, T}}
boundary_conditions: :AbstractBoundaryConditions
end

Let’s define the concrete MC move we will use for our particle-based simulations. One
choice, analogous to the single spin flips in the Ising model, is to randomly displace a particle
by some amount. This structure holds a key parameter — the maximum displacement in any
direction that we will propose — which will be important to tune so that the system can explore
a reasonable amount of phase space and that move get accepted a reasonable amount of the
time.

struct SingleParticleMove{T} <: AbstractMCMove
max_displacement::T

end

struct ParticleMoveInfo<{D, T}
index::Int
new_position::SVector{D,T}

end

The proposal and acceptance functions are straightforward implementations that dispatch
on this new move type, with the proposal function returning new structure that, as before,
contains the information needed to accept a move if the Metropolis criteria is satisfied.

160 CHAPTER 12. THE METROPOLIS ALGORITHM

function propose_move(system::ParticleSystem{D,T}, hamiltonian,
move: :SingleParticleMove) where {D,T}

idx = rand(1:length(system.particles))

p_old = system.particles[idx]

random_vec = rand(SVector{D,T}) .* 2.0 .- 1.0
displacement = random_vec * move.max_displacement

return ParticleMoveInfo(idx, p_old.position + displacement)
end

function accept_move! (system::ParticleSystenm,
move_info: :ParticleMoveInfo, move::SingleParticleMove)

p_old = system.particles[move_info.index]
p_new = Particle(move_info.new_position, p_old.velocity,
p_old.mass)

system.particles[move_info.index] = p_new

end

To handle the physics, we introduce a ParticleHamiltonian that holds an instance of a
new potential type. This allows us to plug in a LennardJones struct, a HarmonicRepulsion
struct, or any other potential that conforms to our interface. It’s one extra layer of indirection,
but it allows us to decouple the physical law from the simulation algorithm, exactly as we might
want

abstract type AbstractHamiltonian end

struct LennardJones{T} <: AbstractHamiltonian
epsilon::T
sigma::T
cutoff_sq::T

end

struct ParticleHamiltonian{P<:AbstractHamiltonian} <: AbstractEnergy
potential::P
Additional structures for, e.g. for cell list calculations

end

Finally, we implement the function to calculate the change in energy associated with our
proposed move. We adopt the strategy of computing the contribution to the system energy due
to the selected particle - not the total energy of the system! - and then recompute what would
happen if we temporarily place the particle at the proposed new position. Even for this step we
should be sure to reuse all of our (e.g.) cell list technology to make the calculation as efficient
as possible, and then we should be absolutely sure to restore the system to its original state

12.3. CASE STUDY II: PARTICLE-BASED SYSTEMS 161

before returning the energy difference. This allows us to reuse a set of helper functions while
also correctly calculating the E needed for the Metropolis acceptance criteria.

function calculate_AE(system::ParticleSystem, info::ParticleMovelInfo,
ham: :ParticleHamiltonian, move::SingleParticleMove)

particle_idx = info.index
A helper function we need to write
E_old = _particle_energy(info.index, system, ham)

p_old = system.particles[info.index]
p_ghost = Particle(info.new_position, p_old.velocity, p_old.mass)

system.particles[info.index] = p_ghost
E_new = _particle_energy(info.index, system, ham)

system.particles[particle_idx] = p_old
return E_new - E_old
end

12.3.2 Comparing Methods: MC vs. MD

We have now spent time developing two complete simulation engines - MD and MC - that can
be applied to study the same particle fluids. When we run both simulations at the same state
point (NVT) and calculate structural properties like the radial distribution function, we expect
to get results that are statistically identical. This is both a profound validation of both methods,
and also a beautiful demonstration of statistical physics: two completely different microscopic
processes (deterministic time evolution and a stochastic random walk) have converged to the
same equilibrium structure.

Both methods work, so — you might ask — which is better? The answer depends on the
scientific question you are trying to get at, as they provide fundamentally different kinds of
information. MD generates trajectories, and so it is the correct way to study dynamical prop-
erties directly: diffusion, viscosity, relaxation times, and so on. It’s main disadvantage is that,
for system with large energy barriers between different states, it can take an extremely long
time for the natural dynamics of the system to explore the entire relevant parts of phase space.
In contrast, as we’ve emphasized, MCMC generates a sequence of configurations, and knows
nothing about real time. However, because its “moves” are not constrained to lie along physical
paths, you can invent Monte Carlo moves that much more quickly sample complex phase spaces.
This can make MC methods much more efficient than MD for constructing phase diagrams,
evaluating free energies, or finding the equation of state of some system.

In short: they are not really competitors — they are complementary tools. MD tells you how
a system gets from state A to B; MC is a powerful shortcut for figuring out the properties of A
and B themselves.

Chapter 13

Hamiltonian Monte Carlo and Bayesian
inference

In the previous chapters we developed and compared two different simulation paradigms:
molecular dynamics, which follows physical trajectories of a system, and Monte Carlo, which
performs statistical random walks to explore the steady state distribution of configurations.
Notably, in Metropolis Monte Carlo we are free to be wildly creative in how we craft the proposal
function g(u — u'). This freedom will be the key to our next advance.

The standard Metropolis algorithms we introduced in Chapter 12 used simple, local propos-
als — flipping a single spin, or translating a single particle. These are powerful, but also suffer
from a potentially crippling inefficiency: they tend to perform very slow random walks around
local neighborhoods of configuration space. Especially in high dimensions, it can take a large
amount of time and computational effort for samples in our sequence of states to decorrelate.
Perhaps we could start designing smarter proposals, that make take us to distant states that are,
at the same time, very likely to be accepted? In this concluding chapter of Module III, we’ll
explore an interesting marriage of the MD and MC techniques we’ve been studying. We’ll use
the resulting methods to solve a canonical scientific task: estimating the parameters of a model
that best fit a set of data.

13.1 Hybrid Monte Carlo

In what may seem like a surprising detour, let’s first extend the code that performs our Metropo-
lis simulations of particle-based systems by introducing a new move. Rather than have the state
u' arise by picking a particle at random from configuration y; and translating it a little bit, Let’s
imagine starting at u; and generating a proposed state u’ by performing a molecular dynam-
ics simulation of some duration! Rather than just moving a single random particle by a small
amount as we did in Section 12.3, this new state involves all of the particles following some
physical dynamics to move to a new position. This will likely decorrelate the sequence of MC
states much more quickly than individual particle-based moves. We can also do this in a way
that yields a high acceptance probability for our proposals: if we use symplectic integrators from
Section 9.2 we know that the energy of the system will be approximately conserved, and so the
energy differences between states will remain quite small.

162

13.1. HYBRID MONTE CARLO 163

This idea of using Hamiltonian dynamics as part of MCMC was originally called “hybrid
Monte Carlo” [66, 67], and with the work we have do it is actually remarkably easy to implement.
As shown in code block 13.1, the primary task is to extend the AbstractMCMove part of our
type hierarchy by introducing a HamiltonianMove struct. Our strategy will be to store in this
structure all of the components — a way of calculating forces, a method of integration, etc -
that we need to plug into our existing API for running MD simulations. As has sometimes
been the case, we will make a concession to performance in these definitions: since the “move
information” would in principle need to contain the entire configuration of the system, and it
would be expensive to copy that much data all of the time, we keep a scratch space for data in
the HamiltonianMove struct itself.

s N

struct HamiltonianMove{F <: AbstractForceCalculator,
I <: AbstractIntegrator, D, T} <: AbstractMCMove
force_calculator::F
integrator::I
temperature:: T
time_step_size::T
n_steps::Int
scratch_system: :ParticleSystem{D, T} #to avoid making copies
end

struct HamiltonianMoveInfo{T}
delta_e::T
end

Code block 13.1: A kind of MC move that involves simulating a particle system via molecular
dynamics.

The one potentially unexpected wrinkle we have introduced here is at the beginning of
the propose_move function: before launching our simulation we randomize particle velocities
by drawing them from the appropriate Maxwell-Boltzmann distribution. Why? Well, molecu-
lar dynamics is in the “Hastings” regime of Metropolis-Hastings, in that outside of extremely
unusual pairs of states there is no reason to think that MD will result in a symmetric pro-
posal distribution: g(u — u') # g(u’ — u). For such asymmetric proposals the acceptance
probabilitiy must be [62]

p(u")glu’ — u))
" pgu = w))

That seems to be a problem: if we maintain the particle velocities, MD is deterministic — from
configuration u there is a state 4’ that MD always proposes, and in general if we have gone
from state u to u’ the odds that continuing the MD trajectory for the same amount of time will
take you from u’ back to u would require a laughably unlikely conspiracy. But if g(u’ — u) = 0,
we are left with an acceptance probability of zero; that doesn’t do anybody any good.

One elegant solution, outlined in code block 13.2 might be to have the proposed move
integrate the equations of motion forward and then flip all of the particle momenta. This

Ap - ') = min(l (13.1)

164 CHAPTER 13. HAMILTONIAN MONTE CARLO AND BAYESIAN INFERENCE

function propose_move(system::ParticleSystem{D,T}, hamiltonian,
move: :HamiltonianMove{F, I, D, T}) where {F, I, D, T}
t = sqrt(move.temperature)
for (i, p) in enumerate(system.particles)
move.scratch_system.particles[i] = Particle(
p.position, randn(SVector{D,T}) * t/sqrt(p.mass), p.mass
)

end

old_energy = total_energy(move.scratch_system, hamiltonian)
run_simulation! (move.scratch_system, move.force_calculator,
move.integrator, move.time_step_size, move.n_steps)

new_energy = total_energy(move.scratch_system, hamiltonian)
return HamiltonianMoveInfo(new_energy-old_energy)
end

Code block 13.2: A propose_move function for hybrid MC.

would bring us back to a symmetric proposal distribution, but without further tinkering we
would end up constructing a Markov chain that only oscillated between two states. A better
solution is to recall that in our MCMC approach we are not trying to trace system dynamics,
we are trying to sample the phase space. The randomization of momenta at each step is what
allows the Markov chain to explore the space effectively, preventing it from getting stuck in
deterministic loops. That is, randomizing particle momenta before each MD run is a nice way
of simultaneously giving us a symmetric g and introducing enough noise to actually explore
phase space.

The acceptance step is then a standard Metropolis criteria, but because symplectic integra-
tors almost conserve the total Hamiltonian, the change in A7 will be small and the acceptance
probability will be high. This is the central trick of HMC.

13.2 Bayesian parameter inference

Forget something as specific as simulating particles for a moment. A much broader task that
arises in all of the sciences is inferring the unknown parameters of some model from a set of
(often noisy) experimental data. The traditional approach to this problem, which I suspect you
have already learned, is to cast parameter inference as a point estimation problem: given a
model and some data, what is the single best-fit set of parameters that minimizes the difference
between the model and the data. Perhaps the most common version of this is to perform a
least-squares fit, but more generally one can define a loss function on the difference between
the model and the data and try to minimize the loss function with respect to the model’s
parameters.

Bayesian inference offers an alternate perspective. Rather than trying to find the single

13.3. HAMILTONIAN MONTE CARLO 165

best-fit set of parameters, the goal is to construct the entire posterior probability distribution,

p(5 |D), which represents the probability of the parameter values 6 given the observed data D.
This distribution doesn’t just give us the most likely parameter values - it gives us the full range
of their uncertainties and any correlations that might exist between them.

The foundation for this approach is Bayes’ theorem [68, 69]:

p(D|6)p(6)
p(D)

You may not have seen this before, so let’s be clear on the notation and on the physical meaning

p(6|D) = (13.2)

of each of these terms. We’ve already mentioned the posterior, p(5|D), and we read those
symbols as “the probability of 6 given (or conditioned on) D” - this is the quantity we want to
compute. The likelihood p(D|5) asks, “Given a specific set of parameters 6 that go into a model
f(x, 5), what is the probability of observing our actual data D?”

Answering that question is where our physical model and our assumptions about exper-
imental noise enter. A common starting point is to assume that each of the N data points
y; € D all are subject to independent Gaussian noise of some standard deviation o. Under that
assumption, the likelihood is given by a product of probabilities:

N -
A (yl _ f(xi’ e))Z
P(D|6) x g exp (S (13.3)

The next components of Eq. (13.2) is the prior, p(é). The prior represents our knowledge
about the parameters before we see the data: we might have a “flat” prior if we really have no
idea of what the parameters cold be, or an “informed” prior if we have some physical constraints
on (e.g., by symmetry) or other knowledge of the values the parameters can take. Finally we

have the evidence, p(D) = [p(Dlé) p(é) dé, which appears as a normalization constant.

The structure to really burn into your brain is posterior « likelihood X prior. The evidence
is a normalization constant that, much like the partition function Z in the previous chapter,
is in generally impossible to actually compute. But just like Z, we don’t actually need it for
sampling! If we use MCMC to explore the space of model parameters, we can make sure that
we only ever care about ratios of the posterior, for which the normalization factor cancels out.

While a standard Metropolis random walk could (in principle) explore this parameter space,
for even modestly complex models it becomes incredibly inefficient. The simple local moves
that work well for the Ising model turn out to be poorly suited to navigating the complex and
often strongly correlated “landscapes” of posterior distributions. This inefficiency is not just
an inconvenience: it is often the primary barrier to performing a Bayesian analysis at all. This
sets the stage for our final application: using a surprising but physically-motivated MCMC
algorithm for our Bayesian inference tasks.

13.3 Hamiltonian Monte Carlo

The core idea is going to be to map the Bayesian inference problem onto a Hamiltonian frame-
work [66, 49, 67]. We imagine that the parameters of the model, correspond to the “positions”

166 CHAPTER 13. HAMILTONIAN MONTE CARLO AND BAYESIAN INFERENCE

of some fictitious particles (typically of unit “mass”), and we furthermore invent some fictitious
“momenta,” {p;} as addition degrees of freedom. We’ll assume these fictitious momenta have a
standard kinetic energy term, K = 3. p; 2/2. Finally, we want the system to be drawn to areas in
which the posterior is large (i.e., hkely values of parameters given our data), so we will invent
a “potential energy” for our system:

U(6) = —log p(8|D). (13.4)

This negative log-posterior function, indeed, has “energy minima” at probability maxima.
From here, we can directly plug into our hybrid/Hamiltonian Monte Carlo framework. The
one caveat is that Eq. (13.4) is a potential energy rather different from the pairwise potentials we
have studied in the context of more normal particle systems. Rather than being a pair-potential,
the data almost certainly couple all of “positional” degrees of freedom together (c.f. Egs. (13.2)

and (13.3)). Thus, the calculation of the “force,” F = —VU(G) = Vlog p(6|D) is often a bit
thorny.

's N

HMC for inference

In the context of our Bayesian inference problem, the HMC algorithm becomes:
1. Start at parameter state 6.

2. Assign random momenta to the parameters, drawing each from a zero mean,
unit variance normal distribution.

3. Calculate the current E)y = H (5, p) = —log p(§|D) + K(p).

4. Simulate Hamiltonian dynamics for M time steps with At = ¢ using a sym-
plectic integrator (e.g., velocity Verlet), to get {6, p'}.

5. Calculate E, o, = H(&', P').

6. Accept the state 6’ with probability min (1, 2%
Key parameters that require tuning for specific models, priors, and data are the step
size and the integration time, At and M.

13.3.1 Case study: inferring exponential decay

Let’s pause and apply this framework to a common, simple problem we’ve discussed several
times in the last few chapters: determining the parameters of an exponential decay from noisy
data. Perhaps we’ve measured some quantity y at various times ¢, and we believe that the
underlying process is actually exponentially decaying:

y(t) = ae~?t, (13.5)

Our goal is to infer the initial amplitude a and the inverse timescale b from a set of N data
points, (t;, y;), assuming that we know the measurement noise (which we will here take to be
independent Gaussian noise whose standard deviation is o).

13.3. HAMILTONIAN MONTE CARLO 167

First, for this model we can transcribe Eq. (13.3) and (up to a constant) write the log-

likelihood:

1 N

log p(D|a, b) = ~5o3 Z (yi — ae‘bt)2
i=1

We also need to specify our priors: what do we know or believe about the parameters a and
b? Simple, relatively uniformative choices might be that they are positive numbers that we
otherwise know nothing about:

p(a) x1 fora>0; p(b)x1 forb > 0.

Combining these and ignoring the constants, we want to sample
1 N
~ L —bt;\2
log p(a, b|D) ~ = izzl(yl ae~?)* (fora > 0,b > 0) (13.6)

This combination of model, likelihood, and prior is one of the few where we can analytically
write down the gradient that we need in order to run our “molecular dynamics.” We have:

w1
. G_Z e~bti (y, — ae~bt) (13.7)
WU -1 .
3 —ZZ i (yi — ae™™) (13.8)
(13.9)

With this in hand, we can directly follow the HMC algorithm above. Starting with some
relatively arbitrary initial parameter values, we choose our HMC parameters, implement a
LogPosteriorHamiltonian for our specific model and then run the metropolis_step! ()
many times.

The output, as with any MC simulation, will be a long list of samples. We need to check
for convergence, and measure autocorrelation times to get independent samples. But having
done so, we are in a position concretely understand how the space of models intersects with
our data. We could create a 2D histogram of the accepted {a, b} samples - the densest region
should be centered around the true values, and the shape of the distribution reveals both the
uncertainties we should have and any correlations between a and b. One would typically find
the marginal posterior distributions - the histograms of just the a values and of just the b values
- and calculate / report the mean value along with other standard statistical measures.

Let’s see what this starts to look like in our code. The first thing we want to do is add new
structs that fit into our type hierarchy for both the metropolis acceptance step (for which we
need a concrete AbstractEnergy which we will dispatch on to compute changes in energy)
and for the MD step (for which we need a concrete AbstractForceCalculator on which we
can dispatch to compute the forces).

168 CHAPTER 13. HAMILTONIAN MONTE CARLO AND BAYESIAN INFERENCE

struct LogPosteriorHamiltonian{M,P} <: AbstractEnergy
data::Vector{Vector{Floaté4}}
data_sigma: :Floaté4
model: : M
prior::P
end
struct LogPosteriorHamiltonianExpModel{E <: AbstractEnergy}
<: AbstractForceCalculator

end

\

J

These simple versions represent relatively hard-coded versions of these structs — our con-
crete energy struct has data, a kind of error term for the data, and space for model and prior
functions, but the concrete force calculator is quite specific. Code block 13.3 shows an imple-
mentation of the compute_acceleration! function that dispatches on our exponential model.
That code block in particular probably feels a bit different than most of the code we’ve been
writing: rather than a generic function it is hyper-specialized (in this case, for (1) a simple
exponential decay model, (2) errors in the data assumed to be independent Gaussians of the
same variance, and (3) a flat prior on the model parameters).

~
mon

Specialized: exp model, indep gaussian errors, and a flat prior
function compute_acceleration! (accelerations::Vector{SVector{D,T}},
system: :ParticleSystem{D, T, B},
calculator::LogPosteriorHamiltonianExpModel) where {D,T,B}
a = system.particles[1].position[1]
b = system.particles[2].position[1]
sigma_squared = calculator.U.data_sigma”2
acceleration_a = zero(T)
acceleration_b = zero(T)
for d in calculator.U.data
common_factor = exp(-b*d[1]) * (d[2] - axexp(-b*xd[1]))
acceleration_a += common_factor
acceleration_b -= a * d[1] * common_factor

end

accelerations[1]

accelerations[2]

return nothing
end

SVector{l,T}(acceleration_a / sigma_squared)
SVector{1,T}(acceleration_b / sigma_squared)

Code block 13.3: A calculate_acceleration function for HMC, concretely implementing
the mapping from a very specific Bayesian log posterior to the gradient of a energy functional.

It’s a little bit inelegant, and yet we can actually tie all of these components together! We can
use the same, e.g., VerletIntegrator we introduced in Chapter 9 with our new “gradient of

13.4. FLIES IN THE OINTMENT 169

the log posterior for the exponential model” ForceCalculator to do the molecular dynamics
that represent each metropolis step, and tie it together with exactly the same MCMC code we
wrote in Chapter 12. Figure 13.1 shows some of the results of such an analysis, in which the
above machinery is applied to “fake data” generated by adding adding uncorrelated Gaussian
noise on top of an exponential model.

Noise parameters

This has been a simplified, extremely idealized setting. For instance, it is rare that
we have the luxury of actually knowing the true distribution of errors to use for
our likelihood function in Eq. (13.3). Much more commonly the noise parameters
(like o) are treated as additional unknown parameters in our model, each with its
own prior distribution. This additional complexity fits seemlessly into the HMC
framework: we account for these extra parameters when defining the negative log-
posterior and calculating its gradient, we we then aim to infer the joint posterior
distribution for both the model parameters and the noise parameters.

3.0

=20

parameter value

0 200 400 1.0 1.2 1.4 1.6 1.8
t a

Figure 13.1: Bayesian inference of model parameters (Left) traces of the sequence of param-
eter values after each metropolis step in an HMC algorithm applied to data generated by adding
noise on top of an exponentially decaying function. (Right) the trajectory of model parameter
points after each metropolis step, with two different values of the HMC tuning parameters (At
and M).

13.4 Flies in the ointment

Using Hamiltonian Monte Carlo for model parameter inference is a powerful, principled tool
in the scientific toolbox. It is, however, not without some sticking points.

13.4.1 The trouble with tuning

First, the trouble with those tuning parameters: how exactly should we choose the integration
time and the total run length? These are completely fictitious parameters — we are using artificial

170 CHAPTER 13. HAMILTONIAN MONTE CARLO AND BAYESIAN INFERENCE

Hamiltonian dynamics to sample space, but its not like the model for our data actually has
Hamiltonian dynamics - so other than “the Markov chain generates independent samples
cheaply” there are precious few objective criteria to help us determine them.

Manually tuning them is challenging. For At, too small a value means a very slow, com-
putationally costly exploration of parameters space; too large a value means the integrator
error grows and the acceptance rate goes down. For M, too few total steps just performs an
inefficient random walk; too many total steps tends to result in trajectories that “U-turn” back
on themselves, wasting a lot of our computational effort. What a headache.

A state-of-the-art solution to this problem are techniques like the “No-U-Turn Sampler”
(NUTS) [70]. At a high level, the basic idea of it is to adaptively, automatically choose how
long to run the Hamiltonian trajectory for each proposal. It does this by building a trajectory
and stopping when it detects that the path is starting to “turn back” on itself (a tricky thing
to quantify in high-dimensional model spaces!). The payoff, though, is that this completely
removes the need for manual tuning of HMC parameters, making Bayesian inference accessible
and robust for a wide range of problems!®?

13.4.2 The problem with partials

The other problem is related to computing the gradient of the negative log-posterior function
we use as the potential energy in our Hamiltonian dynamics. Even in the simplest possible case
- an exponential model, completely flat priors, and independent Gaussian errors in our experi-
mental data - computing the relevant partial derivatives with respect to model parameters is
at least a little bit tedious to do and error prone to encode. It also feels unsatisfying. One can
imagine a vast zoo of potential models you might want to use to fit to data, a similarly large
space of possible priors you might have, and a range of ways that the error in the likelihood
function might work - do we really have to write down a different concrete implementation
of the compute_acceleration! function for every single one of these variations? Fortunately,
there is an unexpected computational tool that will swoop to the rescue, enabling us to com-
pute the gradients of complex log-posteriors just as readily as we can write down new models.
Prepare for Module V!

103j.e., you can and should turn to off-the-shelf solutions for your actual research.

Bibliography

[1]

[10]

[11]

[12]

[13]

[14]

Harold Abelson and Gerald Jay Sussman. Structure and interpretation of computer pro-
grams. The MIT Press, 1996.

Cristopher Moore and Stephan Mertens. The nature of computation. Oxford University
Press, 2011.

Werner Krauth. Statistical mechanics: algorithms and computations, volume 13. OUP
Oxford, 2006.

Daan Frenkel. Simulations: The dark side. The European Physical Journal Plus, 128:1-21,
2013.

Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms to
applications. Elsevier, 2023.

Alex Gezerlis. Numerical methods in physics with Python, volume 1. Cambridge University
Press Cambridge, UK, 2023.

Kyle Novak. Numerical Methods for Scientific Computing: The Definitive Manual for Math
Geeks. Equal Share Press, 2022.

William Jones. Synopsis Palmariorum Matheseos: Or, a New Introduction to the Mathemat-
ics. J. Matthews for Jeff. Wale at the Angel in St. Paul’s Church-Yard, 1706.

William Oughtred. Clavis Mathematicae denuo limita, sive potius fabricata. Lichfield,
1631.

Florian Cajori. A history of mathematical notations, volume 1. Courier Corporation, 1993.

Tom Kwong. Hands-On Design Patterns and Best Practices with Julia: Proven solutions to
common problems in software design for Julia 1. x. Packt Publishing Ltd, 2020.

Lee Phillips. Practical Julia: A Hands-on Introduction for Scientific Minds. No Starch Press,
2023.

Berni J Alder and Thomas Everett Wainwright. Studies in molecular dynamics. i. general
method. The Journal of Chemical Physics, 31(2):459-466, 1959.

Gregorii Aleksandrovich Galperin. Playing pool with 7 (the number 7 from a billiard
point of view). Regular and chaotic dynamics, 8(4):375-394, 2003.

196

BIBLIOGRAPHY 197

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

F Chiappetta, C Meringolo, P Riccardi, R Tucci, A Bruzzese, and G Prete. Boyle, huygens
and the ‘anomalous suspension’of water. Physics Education, 59(4):045026, 2024.

Scott Chacon and Ben Straub. Pro git. Springer Nature, 2014.

Greg Wilson, Dhavide A Aruliah, C Titus Brown, Neil P Chue Hong, Matt Davis, Richard T
Guy, Steven HD Haddock, Kathryn D Huff, lan M Mitchell, Mark D Plumbley, et al. Best
practices for scientific computing. PLoS biology, 12(1):e1001745, 2014.

Greg Wilson, Jennifer Bryan, Karen Cranston, Justin Kitzes, Lex Nederbragt, and Tracy K
Teal. Good enough practices in scientific computing. PLoS computational biology,
13(6):¢1005510, 2017.

Robert Nystrom. Game programming patterns. Genever Benning, 2014.

Volker Strassen. Gaussian elimination is not optimal. Numerische mathematik,
13(4):354-356, 19609.

Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for
matrix multiplication: from alpha to omega. In Proceedings of the 2024 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 3792-3835. SIAM, 2024.

Tony Freeth, Yanis Bitsakis, Xenophon Moussas, John H Seiradakis, Agamemnon Tselikas,
Helen Mangou, Mary Zafeiropoulou, Roger Hadland, David Bate, Andrew Ramsey, et al.
Decoding the ancient greek astronomical calculator known as the antikythera mechanism.
Nature, 444(7119):587-591, 2006.

Arieh Iserles. A first course in the numerical analysis of differential equations. Number 44.
Cambridge university press, 2009.

Ernst Hairer, Christian Lubich, and Gerhard Wanner. Structure-preserving algorithms
for ordinary differential equations. Geometric numerical integration, 31, 2006.

Leonhard Euler. Institutiones calculi integralis, volume 1. Impensis Academiae Imperialis
Scientiarum, 1768.

Carl Runge. Uber die numerische auflosung von differentialgleichungen. Mathematische
Annalen, 46(2):167-178, 1895.

Wilhelm Kutta. Beitrag zur nédherungsweisen Integration totaler Differentialgleichungen.
Teubner, 1901.

John C Butcher. Implicit runge-kutta processes. @ Mathematics of computation,
18(85):50-64, 1964.

Ch Tsitouras. Runge-kutta pairs of order 5 (4) satisfying only the first column simplifying
assumption. Computers & mathematics with applications, 62(2):770-775, 2011.

Hermann Weyl. The classical groups: their invariants and representations, volume 1. Prince-
ton university press, 1939.

198

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

BIBLIOGRAPHY

Loup Verlet. Computer” experiments” on classical fluids. i. thermodynamical properties
of lennard-jones molecules. Physical review, 159(1):98, 1967.

Carl Stermer. Sur les trajectoires des corpuscules électriques dans I'espace sous I’action
du magnétisme terrestre. Archives des Sciences Physiques et Naturelles, 24:5-18, 113-158,
221-247, 317-364, 1907. Published in four parts.

Robert I McLachlan and G Reinout W Quispel. Splitting methods. Acta Numerica,
11:341-434, 2002.

Isaac Newton. Philosophice Naturalis Principia Mathematica. Jussu Societatis Regie ac
Typis Josephi Streater, Londini, 1687.

Eugene Borisovich Dynkin. Calculation of the coefficients in the campbell-hausdorff
formula. In Dokl. Akad. Nauk. SSSR (NS), volume 57, pages 323-326, 1947.

Mark E Tuckerman. Statistical mechanics: theory and molecular simulation. Oxford
university press, 2023.

William Camden. Remaines of a greater worke, concerning Britaine, the inhabitants thereof,
their languages, names, surnames, empreses, wise speeches, poésies, and epitaphes. Printed
by G. Eld for Simon Waterson, London, 1605.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller,
and Edward Teller. Equation of state calculations by fast computing machines. The
journal of chemical physics, 21(6):1087-1092, 1953.

John Edward Jones. On the determination of molecular fields.—ii. from the equation of
state of a gas. Proceedings of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character, 106(738):463-477, 1924.

Robert Bridson. Fast poisson disk sampling in arbitrary dimensions. SIGGRAPH sketches,
10(1):1, 2007.

Kurt Kremer and Gary S Grest. Dynamics of entangled linear polymer melts: A molecular-
dynamics simulation. The Journal of Chemical Physics, 92(8):5057-5086, 1990.

Roger W Hockney and James W Eastwood. Computer simulation using particles. 10P
Publishing Ltd., 1988.

Hans C Andersen. Molecular dynamics simulations at constant pressure and/or temper-
ature. The Journal of chemical physics, 72(4):2384-2393, 1980.

Shuichi Nosé. A unified formulation of the constant temperature molecular dynamics
methods. The Journal of chemical physics, 81(1):511-519, 1984.

William G Hoover. Canonical dynamics: Equilibrium phase-space distributions. Physical
review A, 31(3):1695, 1985.

BIBLIOGRAPHY 199

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Glenn J Martyna, Mark E Tuckerman, Douglas J Tobias, and Michael L Klein. Explicit
reversible integrators for extended systems dynamics. Molecular Physics, 87(5):1117-1157,
1996.

Owen G Jepps, Gary Ayton, and Denis J Evans. Microscopic expressions for the thermo-
dynamic temperature. Physical Review E, 62(4):4757, 2000.

Albert Einstein. Uber die von der molekularkinetischen theorie der wirme geforderte
bewegung von in ruhenden fliissigkeiten suspendierten teilchen. Ann. d. Phys.(Leipzig),
17:549, 1905.

Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of markov
chain monte carlo. CRC press, 2011.

Maurice G Kendall and B Babington Smith. Randomness and random sampling numbers.
Journal of the royal Statistical Society, 101(1):147-166, 1938.

WE Thomson. A modified congruence method of generating pseudo-random numbers.
The Computer Journal, 1(2):83-83, 1958.

George Marsaglia. Random numbers fall mainly in the planes. Proceedings of the National
Academy of sciences, 61(1):25-28, 1968.

Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions on Model-
ing and Computer Simulation (TOMACS), 8(1):3-30, 1998.

Melissa E O’neill. Pcg: A family of simple fast space-efficient statistically good algorithms
for random number generation. ACM Transactions on Mathematical Software, 204:1-46,
2014.

David Blackman and Sebastiano Vigna. Scrambled linear pseudorandom number gener-
ators. ACM Transactions on Mathematical Software (TOMS), 47(4):1-32, 2021.

George EP Box and Mervin E Muller. A note on the generation of random normal deviates.
The annals of mathematical statistics, 29(2):610-611, 1958.

A. A. Markov. Issledovanie zamechatel’'nogo sluchaya zavisimyh ispytanij. Izvestiya
Akademii Nauk, 1(3):61-80, 1907. Translated into French as “Recherches sur un cas
remarquable d’epreuves dependantes”, Acta Mathematica, 33, (1910), 87-104.

A. A. Markov. An example of statistical investigation of the text eugene onegin concerning
the connection of samples in chains. Science in Context, 19(4):591-600, 2006.

Oskar Perron. Zur theorie der matrices. Mathematische Annalen, 64(2):248-263, 1907.

Georg Frobenius, Ferdinand Georg Frobenius, Ferdinand Georg Frobenius, Ferdi-
nand Georg Frobenius, and Germany Mathematician. Uber matrizen aus nicht negativen
elementen. 1912.

200 BIBLIOGRAPHY

[61] William Shakespeare. The Complete Works of William Shakespeare. Project Gutenberg,
1994. Project Gutenberg EBook 100 Accessed October 8, 2025.

[62] W Keith Hastings. Monte carlo sampling methods using markov chains and their appli-
cations. 1970.

[63] Wilhelm Lenz. Beitrag zum verstdndnis der magnetischen erscheinungen in festen kor-
pern. Z. Phys., 21:613-615, 1920.

[64] Ernst Ising. Beitrag zur theorie des ferromagnetismus. Zeitschrift fiir Physik,
31(1):253-258, 1925.

[65] Sigismund Kobe. Ernst ising—physicist and teacher. Journal of statistical physics,
88(3):991-995, 1997.

[66] Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid
monte carlo. Physics letters B, 195(2):216-222, 1987.

[67] Michael Betancourt. A conceptual introduction to hamiltonian monte carlo. arXiv
preprint arXiv:1701.02434, 2017.

[68] Thomas Bayes. An essay towards solving a problem in the doctrine of chances. Philo-
sophical Transactions of the Royal Society of London, 53:370-418, 1763. Communicated
by Richard Price.

[69] Pierre Simon Laplace. Mémoire sur la probabilité de causes par les évenements. Mémoire
de l'académie royale des sciences, 1774.

[70] Matthew D Hoffman, Andrew Gelman, et al. The no-u-turn sampler: adaptively setting
path lengths in hamiltonian monte carlo. J. Mach. Learn. Res., 15(1):1593-1623, 2014.

[71] Stanley J Farlow. Partial differential equations for scientists and engineers. Courier Corpo-
ration, 1993.

[72] Sandro Salsa. Partial differential equations in action. Springer, 2016.

[73] Zhuogiang Guo, Denghui Lu, Yujin Yan, Siyu Hu, Rongrong Liu, Guangming Tan,
Ninghui Sun, Wanrun Jiang, Lijun Liu, Yixiao Chen, et al. Extending the limit of molec-
ular dynamics with ab initio accuracy to 10 billion atoms. In Proceedings of the 27th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 205-218,
2022.

[74] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Ka-
dian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al.
The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[75] John Wallis. Opera mathematica, volume 2. E Theatro Sheldoniano, Oxonii, 1693.

[76] Leonhard Euler. Introductio in analysin infinitorum, volume 2. MM Bousquet, 1748.

BIBLIOGRAPHY 201

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

Eduard Study. Geometrie der Dynamen. Die Zusammensetzung von Krdften und verwandte
Gegenstinde der Geometrie. B. G. Teubner, Leipzig, 1903.

RWHT Hudson. Geometrie der dynamen. die zusammensetzung von kriften, und ver-
wandte gegenstdnde der geometrie. von e. study.(leipzig, teubner, 1903.) pp. 603. m. 21.
The Mathematical Gazette, 3(44):15-16, 1904.

Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. Journal of machine
learning research, 18(153):1-43, 2018.

William Kingdon Clifford. Preliminary sketch of biquaternions. Proceedings of the London
Mathematical Society, 1(1):381-395, 1873.

Robert Edwin Wengert. A simple automatic derivative evaluation program. Communica-
tions of the ACM, 7(8):463-464, 1964.

Isaac Newton. The Method of Fluxions and Infinite Series; With Its Application to the
Geometry of Curve-Lines. Henry Woodfall, London, 1736. Originally written in Latin as
"De Methodis Serierum et Fluxionum’ c. 1671.

Jarrett Revels, Miles Lubin, and Theodore Papamarkou. Forward-mode automatic differ-
entiation in julia. arXiv preprint arXiv:1607.07892, 2016.

Seppo Linnainmaa. Taylor expansion of the accumulated rounding error. BIT Numerical
Mathematics, 16(2):146-160, 1976.

Bert Speelpenning. Compiling fast partial derivatives of functions given by algorithms.
University of Illinois at Urbana-Champaign, Urbana-Champaign, 1980.

Alan Mathison Turing et al. On computable numbers, with an application to the entschei-
dungsproblem. J. of Math, 58(345-363):5, 1936.

Adrian Hill, Guillaume Dalle, and Alexis Montoison. An illustrated guide to automatic
sparse differentiation. In ICLR Blogposts 2025, 2025.

	III Module 3: Random numbers and Monte Carlo methods
	Pseudorandomness and Monte Carlo integration
	Pseudorandom number generators
	A simple PRNG: linear congruential generators
	Modern approaches
	Reproducibility and Seeding
	Generating non-uniform random numbers

	Application: Monte Carlo Integration
	The Basic Idea: Throwing Darts
	Convergence and the curse of dimensionality

	Importance sampling
	Biasing and re-weighting
	The bridge to statistical physics

	The Metropolis algorithm
	Markov chain Monte Carlo
	Engineering the stationary distribution
	The Metropolis-Hastings algorithm

	Case Study I: The Ising model
	A top-down design
	System data structures
	Monte Carlo moves
	Energy calculations
	Analyzing MCMC data

	Case Study II: Particle-based systems
	Implementation details
	Comparing Methods: MC vs. MD

	Hamiltonian Monte Carlo and Bayesian inference
	Hybrid Monte Carlo
	Bayesian parameter inference
	Hamiltonian Monte Carlo
	Case study: inferring exponential decay

	Flies in the ointment
	The trouble with tuning
	The problem with partials

	Bibliography

