Preface

This is a set of lecture notes prepared for PHYS 436: Advanced Computational Physics (Emory
University, Fall 2025). It is more verbose than what I will actually cover in class, but also not a
comprehensive textbook. I am sure there are both typos and errors in this document - Please
email any corrections to:

daniel.m.sussman@emory.edu

Course information

In the syllabus I said something faintly ridiculous:

Computational physics is both deeply rooted in the historical foundations of mod-
ern physics, and is simultaneously at the cutting edge of current research. It’s a
powerful lens through which to view the universe, and it delivers a set of tools that
can tackle problems once deemed intractable.

But what will this class actually be about? On the one hand, it is is structured around a handful
of modules, each of which loosely corresponds to a different category of numerical methods
and the typical physical questions that we can ask with those methods. This will be a somewhat
high-level overview; entire textbooks have been written not only about each of these modules,
but often on each lecture within each module.

So what are we really trying to do? A first course in computational physics is often about
building a toolbox: you learn fundamental algorithms for integration, solving ODEs, working
with data, and so on. While we will certainly cover more advanced algorithms, our focus will
shift from the specific tools to the more subjective art of how to use them well. You already
know about if statements and for loops and functions, so in an important sense you already
know everything you need to write arbitrarily complex code. We’ll use the modules as arenas
to ask harder questions: How can we build a computational project that doesn’t collapse under
its own weight? How do we write code that is not just correct for one problem, but robust,
reproducible, and reusable for a whole class of problems? What patterns of thinking allow us
to solve complex physical challenges elegantly?

That’s why this course will begin with a “foundations” module. The modules that follow
will share some common themes and focus on similar systems viewed in different ways. But
they will also be an opportunity for us to practice these more fundamental skills. We will also
be thinking hard about code as a form of technical writing - while it is tempting to think about
code as a series of instructions to be handed to a computer, it is really just another tool we are

ii PREFACE

using to try to solve a problem. And if we are to convince others that we have solved a problem,
we should apply the same ideas of clear communication to this tool®.

A note on writing our own code

Throughout these notes, we’ll be adopting a largely “first-principles” approach. While we might
use a few packages that define convenient data structures, we’ll be writing our own implemen-
tations for nearly every main algorithm we encounter — our own ODE solvers, our own Monte
Carlo samplers, etc. We will try to write clean, efficient, modular code; our primary goal, though,
will always be pedagogical. We are writing code to learn.

This raises an important question: is this first-principles approach how you should tackle
problems in your own research? No! In a real research project, you should almost never write
(e.g.) your own ODE solver from scratch - you should look for a high-quality existing imple-
mentation. The scientific community has collectively invested thousands of hours into building
robust, performant, and reliable tools; reinventing the wheel is not merely inefficient, but it is
also a strategy for introducing subtle bugs and errors into your work.

How do we identify “high-quality” implementations? And why are we spending our time
building tools we won’t (and/or shouldn’t) use? The answers come down to an attitude of not
treating existing libraries as black boxes. To be able to both assess a tool and use it effectively
we need to be able to understand how it works, what its assumptions are, and where it might
break or fail itself.

Thus, one of the most vital skills this course aims to cultivate is our ability to know how to
trust code, and the intuitions that go along with that ability. How can we be confident that a
library, a snippet found online, or a function generated by an LLM is actually correct? To be
able to verify such code, we need to develop certain skills and habits. We need to be able to
test against known cases - does the code reproduce analytical solutions or have the correct
asymptotic properties when such things are known? We need to be able to reason about
invariants - does the code correctly preserve physical symmetries and other properties we
know are generic features of the problem beyond just testing specific examples? We also need to
be able to reason about behavior — does the output make physical sense, and what qualitative
signatures of the code “working correctly” can we robustly rely on?

In the age of large language modes, these skills are more critical than ever: an LLM can
generate complex functions in seconds - these functions can look plausible and yet be catas-
trophically wrong.

So, as we build the various tools up from scratch in this course, remember that the goal is not
really the tools themselves but rather the skills and intuitions we’re forging by building them.
We are learning various algorithms and approaches, but we are more importantly learning to
be discerning and critical scientists. The world is full of code we didn’t write — trust, perhaps,
but definitely verify.

1« .programs must be written for people to read, and only incidentally for machines to execute.” - Abelson
and Sussman [1] (A different, much smarter Sussman)

iii
A note on our choice of programming language

You might be wondering why we’re choosing Julia as our programming language for the journey
ahead. The answer has a few layers.

On the surface — and this could be a reasonable justification on its own! - Julia stands out
as an excellent language for the kinds of problems we’ll be tackling this semester. It’s a modern,
high-performance language designed with scientific and numerical computation in mind. It
is simultaneously a dynamically typed “scripting language” in which simple, expressive code
can be written very quickly and with minimal boilerplate — even more so than in Python, often
one can almost directly translate mathematical expressions from a textbook into your code.
At the same time, Julia’s type system and just-in-time compilation model enable it to produce
extremely fast code - often competitive with the kinds of bare-metal speed typically associated
with languages like C. In combination: its expressive syntax, features like multiple dispatch,
and strong ecosystem of shared numerical packages make it a compelling choice for scientific
researchers. I expect that this largely captures the flavor of the answer to “Why Julia?” you
anticipated. On the other hand: there are many languages that I could have written a similarly
plausible paragraph about while highlighting different strengths. Julia might be more friendly
to beginning scientists than many languages, but it would just be one of several excellent
choices we could have made.

Thus, there’s a second, more pedagogical motivation underneath that surface answer. One of
the core goals of this course is not just to teach you how to code, but to think more fundamentally
about writing programs that translate ideas into computational reality. Coding — where you
type-type-type away as arcane symbols materialize on your screen - is an important skill (albeit
one whose role is evolving rapidly as LLMs grow increasingly powerful). Programming, though,
is the art and craft of weaving together algorithms and data structures to solve problems. When
working solely within one’s first programming language, there’s a common tendency to conflate
the general challenge of creating a program with the specific challenge of creating a program
within that language’s particular syntax and constraints.

We often grasp the underlying rules of a system more profoundly not when we directly
study it but when we encounter — and can contrast with — a different but related one. For
example, I gained a much deeper understanding of the grammar of English only after I started
learning a second language. I learned to identify and abstract out concepts — like “noun” or
“past perfect tense” or “imperfect aspect” — that I had been using for years but that didn’t have a
label or category for. By choosing a language that I anticipate most of you haven’t encountered
extensively before, I aim to provide that “second language experience,” but in the realm of
programming. Hopefully seeing familiar concepts in the context of Julia will help crystallize
your understanding of programming’s universal building blocks, independent of any particular
language’s syntax.

Beyond these considerations of language features and the theory of learning, there is a final
- and more personal - layer to this decision: I love learning. One of the true joys of academia
is the constant opportunity to explore new areas and consume more and more knowledge. My
own computational research almost entirely involves writing in C and CUDA/C++, and in the
early spring of 2025 I saw a research talk that cited a Julia package. The talk was excellent, the
code seemed to be doing some clever things, and I filed that memory away as an intriguing
tidbit to come back to someday.

iv PREFACE

Well, when I first began to structure the notes for this class, I started to get a little worried
- much of the course content was material I had thought too much about for too much of
my research. Where would the opportunity be for me to learn something alongside you? That,
ultimately, was the tie-breaking factor in choosing Julia: I selected a language that I was excited
to learn more about myself. My hope is that by learning and navigating some of Julia’s intri-
cacies together, we not only master the course material but also model the rewarding process
of continuous learning and of navigating new technical landscapes - skills that will serve you
well long after this semester ends. I'm excited to be on this learning path with you, and I hope
you find that enthusiasm infectious!

Sources

Much of the intellectual content of these notes is obviously not original to me. Throughout I
will cite and link to relevant literature and textbooks; I would like to highlight the following as
particularly strong general sources I have drawn from or been inspired by:

1. Moore and Mertens, The nature of computation ([2]); a fantastic book on the theory of
computation. An excellent bridge to the subject even for folks that don’t have a formal
CS background.

2. Krauth, Statistical mechanics: algorithms and computations ([3]); an strong introduction
to computational approaches in (no surprise here) statistical physics.

3. Frenkel, Simulations: the dark side ([4]); an article that serves as a reminder of just how
much implicit / tribal knowledge there is in computational science. This article was an
important motivator for me to write down a lot of the mundane, practical tips that you’ll
find throughout these notes. Of course, Frenkel and Smit’s textbook is also excellent [5].

4. Gezerlis, Numerical methods in physics with Python [6]; a book that covers many core
numerical methods very nicely, and with motivating examples from a broad range of
physical systems.

5. Novak, Numerical methods for scientific computing: The definitive manual for geeks [7];
a nice, Julia-centric introduction to numerical analysis, linear algebra, and differential
equations. Practical and readable.

Visual elements in these notes

Throughout these notes you’ll see blocks of text with different styles. Text that is meant to
represent typing at the command prompt (along with the results of entering those commands)
will look like this:

$1s -1a
total 8

drwxr-xr-x 2 daniel daniel 4096 May 21 09:42 ./
drwxr-xr-x 5 daniel daniel 4096 May 21 09:42 ../

Interactions with the Julia REPL will look like this:

julia> x=1
1

When I want to indicate blocks of code (either actual code or pseudo-code), it will have
syntax highlighting and look like this:

sampleCodeblock.jl

function f(x)
println("You have got to be kidding me -- ",x,"!1?")
return acos(x) + 17

end

I will make occasional comments, sometimes out of the flow of the text; e.g.:

Comment!

I find fiddling with aesthetic choices soothing, but I should probably spend more
time writing. Also, I'm not completely sold on the current choices®. Good thing
LaTeX makes separating form from content (relatively) easy!

] personally code in dark themes chosen based on my whims, but a light theme is much better
for readability in a PDF. Lacking a background in graphic design or some other domain that would
help me choose, I've gone with a best-guess at what will be clean, pleasant, and readable for most
people.

Occasional questions to stop and ponder will appear like this:

[Question!]

Do you like these aesthetic choices? Which ones would you have made?

If I feel like I particularly need to call your attention to something, I will try to do so like
this:

[Attention!]

“De la forme nait I'idée” - attributed to Flaubert in the Goncourt Journal. I will try
to reserve these boxes for things that are... more relevant.

Finally: as you’ve already seen, these notes will make liberal use of footnotes. I like them?.

Many authors will instead invoke the famous Noél Coward quote, “Having to read footnotes resembles having
to go downstairs to answer the door while in the midst of making love.” They and Sir Coward presumably... read
books more intensely than I.

https://www.gutenberg.org/ebooks/14799
https://en.wikipedia.org/wiki/No%C3%ABl_Coward

vi PREFACE

Fonts and colors

In case you're curious: These notes were typeset using STIX Two for the main text and math-
ematics. Code and other monospace elements use JetBrains Mono, with all of the ligatures
disabled and scaled in size to match the main text. I have, thus, spent a great deal of time and
consideration in order to select two standard, sensible fonts.

Visual elements in these notes are based on several open source color schemes:

« The primary color palette (questions, comments, notes, and code blocks) are derived
from the “Kanagawa” theme by Tommaso Laurenzi (MIT License).

« Julia REPL colors use the “gruvbox-material” theme by Sainnhe Park (MIT License).

« The representation of the command prompt uses the “modus-operandi-tinted” theme
by Protesilaos Stavrou (GPL-3.0).

https://github.com/stipub/stixfonts
https://www.jetbrains.com/lp/mono/
https://github.com/rebelot/kanagawa.nvim/
https://github.com/sainnhe/gruvbox-material
https://github.com/protesilaos/modus-themes

Bibliography

[1]

[10]

[11]

[12]

[13]

[14]

Harold Abelson and Gerald Jay Sussman. Structure and interpretation of computer pro-
grams. The MIT Press, 1996.

Cristopher Moore and Stephan Mertens. The nature of computation. Oxford University
Press, 2011.

Werner Krauth. Statistical mechanics: algorithms and computations, volume 13. OUP
Oxford, 2006.

Daan Frenkel. Simulations: The dark side. The European Physical Journal Plus, 128:1-21,
2013.

Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms to
applications. Elsevier, 2023.

Alex Gezerlis. Numerical methods in physics with Python, volume 1. Cambridge University
Press Cambridge, UK, 2023.

Kyle Novak. Numerical Methods for Scientific Computing: The Definitive Manual for Math
Geeks. Equal Share Press, 2022.

William Jones. Synopsis Palmariorum Matheseos: Or, a New Introduction to the Mathemat-
ics. J. Matthews for Jeff. Wale at the Angel in St. Paul’s Church-Yard, 1706.

William Oughtred. Clavis Mathematicae denuo limita, sive potius fabricata. Lichfield,
1631.

Florian Cajori. A history of mathematical notations, volume 1. Courier Corporation, 1993.

Berni J Alder and Thomas Everett Wainwright. Studies in molecular dynamics. i. general
method. The Journal of Chemical Physics, 31(2):459-466, 1959.

Gregorii Aleksandrovich Galperin. Playing pool with 7 (the number 7 from a billiard
point of view). Regular and chaotic dynamics, 8(4):375-394, 2003.

F Chiappetta, C Meringolo, P Riccardi, R Tucci, A Bruzzese, and G Prete. Boyle, huygens
and the ‘anomalous suspension’of water. Physics Education, 59(4):045026, 2024.

Volker Strassen. Gaussian elimination is not optimal. Numerische mathematik,
13(4):354-356, 1969.

116

BIBLIOGRAPHY 117

[15] Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for
matrix multiplication: from alpha to omega. In Proceedings of the 2024 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 3792-3835. SIAM, 2024.

[16] Leonhard Euler. Institutiones calculi integralis, volume 1. Impensis Academiae Imperialis
Scientiarum, 1768.

[17] Carl Runge. Uber die numerische auflésung von differentialgleichungen. Mathematische
Annalen, 46(2):167-178, 1895.

[18] Wilhelm Kutta. Beitrag zur niherungsweisen Integration totaler Differentialgleichungen.
Teubner, 1901.

[19] John C Butcher. Implicit runge-kutta processes. = Mathematics of computation,
18(85):50-64, 1964.

	Preface
	Course information
	A note on writing our own code
	A note on our choice of programming language
	Sources
	Visual elements in these notes

	Bibliography

