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Preface

This is a set of lecture notes prepared for PHYS 436: Advanced Computational Physics (Emory
University, Fall 2025). It is more verbose than what I will actually cover in class, but also not a
comprehensive textbook. I am sure there are both typos and errors in this document – Please
email any corrections to:

daniel.m.sussman@emory.edu

Course information
[Not needed right now]

A note on our choice of programming language
Youmight bewonderingwhywe’re choosing Julia as our programming language for the journey
ahead. The answer has a few layers.

On the surface – and this could be a reasonable justification on its own! – Julia stands out
as an excellent language for the kinds of problems we’ll be tackling this semester. It’s a modern,
high-performance language designed with scientific and numerical computation in mind. It
is simultaneously a dynamically typed “scripting language” in which simple, expressive code
can be written very quickly and with minimal boilerplate – even more so than in Python, often
one can almost directly translate mathematical expressions from a textbook into your code1.
At the same time, Julia’s type system and just-in-time compilation model enable it to produce
extremely fast code – often competitive with the kinds of bare-metal speed typically associated
with languages like C. In combination: its expressive syntax, features like multiple dispatch,
and strong ecosystem of shared numerical packages make it a compelling choice for scientific
researchers. I expect that this largely captures the flavor of the answer to “Why Julia?” you
anticipated. On the other hand: there are many languages that I could have written a similarly
plausible paragraph about while highlighting different strengths. Julia might be more friendly
to beginning scientists than many languages, but it would just be one of several excellent
choices we could have made.

Thus, there’s a second, more pedagogical motivation underneath that surface answer. One
of the core goals of this course is not just to teach you how to code, but to think more fun-
damentally about writing programs that translate ideas into computational reality. Coding –

1Unicode symbols for the math and all!
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where you type-type-type away as arcane symbols materialize on your screen – is an important
skill (albeit one whose role is evolving rapidly as LLMs grow increasingly powerful). Program-
ming, though, is the art and craft of weaving together algorithms and data structures to solve
problems. When working solely within one’s first programming language, there’s a common
tendency2 to conflate the general challenge of creating a program with the specific challenge
of creating a program within that language’s particular syntax and constraints.

A fascinating aspect of learning is that we often grasp the underlying rules of a system
more profoundly when we encounter a different but related one. For example, many people
find that they gain a radically deeper understanding of the grammar of their native tongue only
after they study a second language. We learn to abstract and identify concepts – like “noun”
or “past perfect tense” or “imperfect aspect” – that we had been using for years but that we
didn’t have a label or category for. By choosing a language that I anticipate most of you haven’t
encountered extensively before, the aim is to provide that “second language experience,” but
in the real of programming. Hopefully seeing familiar concepts in the context of Julia will help
crystallize your understanding of programming’s universal building blocks, independent of
any particular language’s syntax.

Beyond these considerations of language features and the theory of learning, there is a
final – and more personal – layer to this decision: I love learning. One of the true joys of
academia is the constant opportunity to explore new areas and to voraciously consume as
much knowledge as possible. My own computational research almost entirely involves writing
in C and CUDA/C++, and in the early spring of 2025 I saw a research talk that cited a Julia
package. The talk was excellent, the code seemed to be doing some clever things, and I filed
that memory away as an intriguing tidbit to come back to someday.

Well, when I first began to structure the notes for this class, I started to get a little worried
– much of the course content was material I had thought too much about for too much of
my research. Where would the opportunity be for me to learn something alongside you? That,
ultimately, was the tie-breaking factor in choosing Julia: I selected a language that I was excited
to learn more about myself. My hope is that by learning and navigating some of Julia’s intri-
cacies together, we not only master the course material but also model the rewarding process
of continuous learning and of navigating new technical landscapes – skills that will serve you
well long after this semester ends. I’m excited to be on this learning path with you, and I hope
you find that enthusiasm infectious!

Sources
Much of the intellectual content of these notes is obviously not original to me. Throughout I
will cite and link to relevant literature and textbooks; I would like to highlight the following as
particularly strong general sources I have drawn from or been inspired by:

1. Author (Source; brief description of why the source is good) [citation]

2. Author (Source; brief description) [citation]

3. Author (Source; brief description) [citation]
2It pulls at me, too!
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Visual elements in these notes
Throughout these notes you’ll see blocks of text with different styles. Text that is meant to
represent typing at the command prompt (along with the results of entering those commands)
will look like this:

$ ls -la

total 8

drwxr-xr-x 2 daniel daniel 4096 May 21 09:42 ./

drwxr-xr-x 5 daniel daniel 4096 May 21 09:42 ../

Interactions with the Julia REPL will look like this:

julia> x=1

1

When I want to indicate blocks of code (either actual code or pseudo-code), I’ll use the
following style of light backgrounds and syntax highlighting.

# sampleCodeblock.jl

function f(x)

println("You have got to be kidding me -- ",x,"!?")

return acos(x) + 17

end

I will make occasional comments, sometimes out of the flow of the text; they will appear
like this:

Comment!

I find fiddling with aesthetic choices soothing, but I should probably spend more
time writing. Also, I’m not completely sold on the current choicesa. Good thing
LaTeX makes separating form from content (relatively) easy!

aEspecially those code blocks... when I’m working I usually prefer dark themes, but I thought
in the context of these notes having a light theme would be more natural.

Occasional questions to stop and ponder will appear like this:

Question!

Do you like these aesthetic choices? Which ones would you have made?

If I feel like I particularly need to call your attention to something, I will try to do so like
this:
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Attention!

“De la forme naît l’idée” – attributed to Flaubert in the Goncourt Journal. I will try
to reserve these boxes for things that are... more relevant.

Finally: as you’ve already seen, these notes will make liberal use of footnotes. I like them3.

Fonts and colors
In case you’re curious: These notes were typeset using STIX Two for the main text and mathe-
matics. Code (and other monospace elements) uses JetBrains Mono, with all of the ligatures
disabled and scaled in size to match the main text.

Colors – including code syntax highlighting and other visual elements – are based on the
“Kanagawa” theme (Tommaso Laurenzi, (c) 2021, MIT License).

3Many authorswill instead invoke the famousNoël Coward quote, “Having to read footnotes resembles having
to go downstairs to answer the door while in the midst of making love.” They and Sir Coward presumably... read
books more intensely than I.

https://www.gutenberg.org/ebooks/14799
https://github.com/stipub/stixfonts
https://www.jetbrains.com/lp/mono/
https://github.com/rebelot/kanagawa.nvim/
https://en.wikipedia.org/wiki/No%C3%ABl_Coward
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Module 0

Hello, 𝜋! Julia as a second
(programming) language

1
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Read the manual!

While I aim to cover many essentials for getting you up and running with Julia –
and I hope you find this introduction engaging – this guide is not intended to be a
substitute for reading the language documentation (which is excellent). My hope is
that if you’ve already worked with, e.g., Python or C++ this guide will help you get
familiar with Julia faster, but there are many topics and corners of the language I
won’t touch on here.

This course assumes that you have already taken an introductory course in computational
modeling and have some experience with basic programming concepts. In this course we’ll
be working with the Julia programming language; I suspect many of you have not used it

Figure 1: A page from the
first book to use the symbol 𝜋
with its modern meaning [1].
“Deſign’d for the Benefit, and
adapted to the Capacities of
BEG INNERS”!

before4, and so this module aims to walk you through – the
syntax, its common patterns, and so on.

Writing a program that displays “Hello, World!” is a tra-
ditional starting point when learning to program (or when
learning the differences between a language you already know
and a new one). Given the context of this class (and Julia’s in-
creasing popularity in the scientific computing community) I
thought it would bemore fun to do something a little bit more
mathematical. Thus, in this module we’ll be cooking up in-
creasingly elaborate ways to output the digits of 𝜋 as we learn
the language we’ll use this semester. Fun fact: 𝜋was first used
to represent the ratio of the circumference to diameter of a
circle in 1706 byWilliam Jones5. Earlier the symbol was used
by William Oughtred to refer to the circumference of what-
ever circle was being considered at the time [2]. Presumably𝜋
was chosen because it is the first letter in the Greek word for
“perimeter” (or “periphery”). Itsmodern use as a constantwas
introduced by Jones and popularized by Euler. Euler, amus-
ingly, seems to have used the symbol to refer to both the con-
stant 3.14… and the constant 6.28… over the course of his life
[3] – a wrinkly in the Pi vs. Tau debate!

The structure of each of the following chapters will be
largely follow the same pattern: initial sections introduce im-
portant concepts, the penultimate section will apply what
we’ve just learned to calculate or approximate 𝜋 in some way,
and then the final section will offer broader reflections on a
topic in computational research or programming.

4See the preface for the whole spiel.
5William Jones’ son – also namedWilliam Jones – was one of the first to suggest the existence of a common

ancestor language for Sanskrit, Latin, Greek, and other languages. We now call this the Proto-Indo-European
language (PIE)!

https://docs.julialang.org
https://julialang.org/
https://www.europeana.eu/en/item/103/10107_4792546?page=5
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://xkcd.com/1292/
https://www.tauday.com/tau-manifesto


Appendix A

Setting up Julia

Arguably the most basic method of finding the digits of 𝜋 is to... ask someone who already
knows the answer6.

A.1 Installing Julia
The recommended way to install Julia on your computer is by installing the “juliaup” binary
(which, in turn, installs the latest stable version of Julia and can be used to keep it up to date.
Follow the linked instructions for your specific operating system; on Linux, for example, it’s as
simple as running this command at the prompt:

$ curl -fsSL https://install.julialang.org | sh

Installation onWindows and macOS is similarly straightforward. One can opt instead to down-
load specific versions of Julia, but the “juliaup” method should work seamlessly.

A.2 The REPL
One of themainways of interactingwith Julia is in an interactive session. TheREPL (“read-eval-
print loop”) is an environment in which the computer waits for input, executes commands once
input is received, potentially displays some output, and then waits for more input. The REPL
is what starts when you run Julia from the command line, and it is a great way to experiment
with the language. After you start Julia you’ll be greeted with a “julia>” prompt. There you
can define variables, manipulate functions, and generally work with arbitrary code. Here’s the
first thing I did when I opened Julia for the first time:

6This, in fact, is reflected in William Jones’ book: “[the] Diameter is to the Periphery, as 1.000, &c. to
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803
48253421170679, True to above a 100 Places; as Computed by the Accurate and Ready Pen of the Truly Ingenious
Mr. John Machin” (Ref. [1], page 243).

3

https://julialang.org/install/
https://julialang.org/downloads/
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julia> 1+1

2

julia> exit()

Powerful stuff.
The REPL also has a powerful “help” mode, which you can access by pressing the “?” key

at the beginning of the “julia>” prompt (which will change to “help?>”). Once there, you can
get help on functions, variables, types, or other Julia objects by typing their name and hitting
enter.

A.2.1 Adding packages

Julia comes with a built-in package manager which can be used to install various modular
components that you might want to use – we’ll learn more about this in Appendix E. You enter
the package-management mode of the REPL by pressing the “]” key at the beginning of an
empty “julia>” prompt. The prompt will change to “(v1.x) pkg>”.

To start off, let’s install a few common packages that will be nice to always have available
as we write code. Enter package mode and type

(@v1.x) pkg> add Revise BenchmarkTools OhMyREPL

“Revise” is a package that will make working with stand-alone files from the REPL easier,
“BenchmarkTools” will help with analyzing code performance, and “OhMyREPL” adds conve-
nient syntax highlighting to the REPL (and lets you tinker with color schemes, if you enjoy that
sort of thing). Just adding these via the package manager does not automatically bring their ca-
pabilities into your current session. To do so, you need to tell Julia you want their functionality,
for instance like so:

julia> using Revise

The packages we just added were installed into your default global environment. Julia, how-
ever, makes it easy to specify different local (or even temporary) environments. This allows for
fine-grained control over which versions of which packages are used for different projects. This
ability is especially important for ensuring the reproducibility of how your code executes— you
should be able to hand someone else your code, and its exact set of dependencies, and expect
that they will get numerically the same result that you did! The principle of reproducibility is
a cornerstone of reliable computational science, and Julia’s tooling is designed to support it
robustly. We’ll learn more about this in Appendix E.1.
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A.2.2 Configuring the REPL
We’ve already seen that packages are not automatically used in your session, but what if there
are packages that you really do want to use all of the time? Every time you start Julia it checks
for a file named “startup.jl” in a root configuration directory7. This file is executed every time
you start the REPL, whichmeans you can use it to customize your default environment (always
loading certain packages that you’ve already installed, or setting a preferred colorscheme, or...).
For instance, if you always wanted to have some of the packages we installed just above active
every time you start the REPL, you could include this in your startup file:

# startup.jl

using Revise

using BenchmarkTools

if isinteractive()

using OhMyREPL

end

The first line is just a comment labeling the file – not important for Julia, but I’ll often use this
kind of convention when I want to indicate that a code snippet is part of a particular file. The
next two lines just activate Revise and BenchmarkTools every time we start Julia, and the if
isinteractive() ... end block is a conditional statement: the code inside this block (here,
just using OhMyREPL) only executes if Julia is running in an interactive mode, such as when
you launch the REPL directly.

A.3 Hello, 𝜋! (Method 1: Asking a friend)
With all of that... let’s finally go ahead and ask Julia for the value of 𝜋 – it turns out that it’s a
built-in constant of the language! In the REPL, just type “pi”, hit enter, and there you go: if you
didn’t know it before, 𝜋 = 3.1415926535897…! Interestingly, Julia can not only work natively
with unicode input (so that you can write lines in your files that really look exactly like the
mathematical equations you want to implement!), but the REPL will tab-complete many LATEX
commands into their corresponding glyph. Thus: you can also type “\pi”, hit tab (and watch a
“𝜋” show up on your screen), and then hit enter. In this case, Julia knows that pi and 𝜋 refer
to the same numerical constant.

Finally, Julia has output formatting options for when you want to print combinations of
strings and numbers to the screen – if you’ve used “print” in Python or “printf” in C you’ll
be familiar with the syntax:

julia> using Printf

julia> @printf("Hello, pi!\npi=%.40f",pi)

pi=3.1415926535897931159979634685441851615906

7By default, this will be in C:\Users\USERNAME\.julia\config\startup.jl onWindows or
/Users/USERNAME/.julia/config/startup.jl on Linux or Mac
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The “Printf” module is part of Julia’s standard library, so no separate installation is needed.
The “@printf” function8 works like the C function of the same name; the result is that we see
a bunch of digits of pi.

Question: floating point 𝜋?

In the example above, we used %.40f, which converts a floating point number (the
“f”) and prints at a precision specifying the number of digits to appear after the
decimal place (the “40”). But standard floating point numbers do not have arbitrary
precision – they use a fixed number of bits to represent numbers, so they can only
be so precise! Assuming that the function is converting Julia’s representation of 𝜋
to a standard double-precision representation (i.e., a double in C++ or the default
float in Python), how many of the displayed digits do you expect to be correcta
before the rest are just numerical noise?

aHow can you get more precision if you need it? Julia has special types like BigFloat that
implement multiple-precision arithmetic. The flexibility to represent numbers at arbitrary levels of
precision comes at the cost of the speed and memory efficiency of fixed-size floating point numbers;
learning when to make such trade-offs is a fundamental skill in scientific computing!

A.4 Notebooks and IDEs
Using the REPL can be an extremely powerful way to quickly iterate on ideas. I’m particularly
accustomed to two workflows when it comes to coding up something more permanent: coding
in an interactive notebook environment, or working in an IDE. For the latter, it turns out that
Julia has dedicated “Pluto” notebooks, which are particularly good for writing reproducible
notebooks. I won’t be using Pluto notebooks in this course, but it turns that the “Ju” in Jupyter
is a nod to the Julia language (along with Python and R) – if you’re already familiar with
working in Jupyter notebooks you might find this a convenient onramp. Conveniently, Google
Colab was recently updated so that you can use it to run Julia rather than Python: just go to
the “Runtime” menu at the top and select “Change runtime type.” As of this writing there
is a small difference in what version of Julia the Colab runs compared to the most up-to-date
version from installing Julia locally, but for the purposes of this class that shouldn’t matter.

Personally I prefer developing and writing code in an editor rather than a notebook (this is
probably just a matter of taste). If you do want to use an editor-based workflow, the VS Code
IDE is widely recommended in the Julia community. Regardless of whether you’re working
with a full IDE or a simpler text editor, one thing you can do is have Julia process a text file as
if you were entering each command, from top to bottom, into the REPL. To see this: create a
new file, perhaps “HelloPi.jl” in some directory, and use your favorite text editor to make
the contents of that file:

# helloPi.jl

using Printf

@printf("Hello, pi!\npi=%.40f",pi)

8Actually a macro, a special Julia feature that lets you transform code before it is run

https://docs.julialang.org/en/v1/stdlib/Printf/
https://cplusplus.com/reference/cstdio/printf/
https://en.wikipedia.org/wiki/Arbitrary-precision_arithmetic
https://plutojl.org/
https://jupyter.org
https://code.visualstudio.com/docs/languages/julia
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If you go to the command line and run this command:

$ julia ./HelloPi.jl

you should see a familiar result. However, this pattern is discouraged, because every time you
start Julia (including when you start it just to run a script like this) there is a relatively long
startup time. That makes working with this workflow – editing a text file and periodically
launching it from the command line – feel slow.

Much better is to keep the REPL open and run the same script by including it:

julia> include("HelloPi.jl")

This executes the contents of the file, and if you make changes to the file you can simply
“{include("HelloPi.jl")}” again to execute commands again or update the definitions of
functions you’ve defined in that file. An even more convenient “keep the REPL up-to-date
with the contents of my file” is provided by the “Revise.jl” package that we installed earlier. It
provides an “include with tracking” command, so that if you change any function definitions
in the file, then the function in the REPL can access immediately gets updated. It’s not much
use for the code we’ve written so far, but the pattern is just:

julia> includet("HelloPi.jl")

That is, “include()” gets replaced with “includet()” – we’ll get radically more use out of a
similar workflow throughout the course. Embracing this interactive workflow not only speeds
up development cycles but becomes a superpower enabling a remarkably fluid and exploratory
approach to problem-solving in Julia.
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Variables, primitive types, and functions

“Calculating” 𝜋 by retrieving a predefined value from memory is, arguably, not that satisfying.
Let’s push a little bit farther as we start to learn about Julia’s type system and how to build
functions.

B.1 Variables and types

Figure B.1: A small subset of Julia’s type tree.
Abstract types are in orange, and concrete types
are in blue. A potentially large number of nodes
are implied by the ellipses in purple.

Most programming languages are either stat-
ically or dynamically typed – type systems
are the rules that assign properties to the
different allowed constructs in the language
(“is variable 𝑥 an integer? a string?), and
a program can be checked for consistency
when it is compiled (static) or when it is
run (dynamic). Julia is a dynamically typed
language, and dynamic typing is fantastic
(among other things) for quickly prototyping
software: since everything only needs to be
correct at the moment the code is running
you can change your mind about what you
want variables to be and how youwant to con-
nect them. This means that in Julia you can
easily write code a la Python. In a statically
typed language, you would have to declare
that, for instance, “x” is an integer. Later on
you had a change of heart and want it to be a
floating point number? Too bad: re-write your
code and recompile everything.

Julia’s type system looks like a massive
tree (a tiny portion of which is in Fig. B.1). At the root of this tree is a special type called
“Any” – by default, values can, indeed, be any type that Julia knows about. This includes the
types that are predefined by the language, and also any types that you (or another package

8

https://en.wikipedia.org/wiki/Type_system
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author) define and add to the type tree. Having values be of this special type is the kind of thing
that allows this nonsense:

julia> x=1

1

julia> x="one"

"one"

Julia has a notion of “abstract” vs “concrete” types. Abstract types are merely nodes in the type
tree, helping to organize related sets of types, and concrete types are those that the compiler
can actually create values for. That means that at any moment a variable will always be some
concrete type:

julia> x=1; typeof(x)

Int64

julia> x="one"; typeof(x)

String

The above example helps emphasize that variables do not have types in Julia, only values do.
Variables are just names that get associated with values. Here, by the way, we see that we
can use a semi-colon in the REPL to suppress output, and the “typeof()” function is part of
Julia’s Core module. You can explore the type tree by using this and the “subtypes()” and
“supertypes()” functions, also in the Core module.

One of the interesting features of Julia, though, is that even though it has a dynamic type
system you can use type annotations in a few different ways. Type annotations make use of
the :: operator, which plays a few different roles. One thing we can use it for is variable type
declarations, which are a promise that we will only ever associate values of a certain type to a
variable (and also converting the RHS of an assignment to the right type when we do so). For
instance, we could write

julia> a::Float64 = 1+3;

Here, although “1+3” would be an “Int64” in Julia, it is (implicitly) converting that value to a
floating point number (from 4 to 4.0). This Float64 value is then bound to the variable a, with
the annotation promising that a will consistently hold this specific floating point type. Making
promises like this is a powerful tool for ensuring correctness and clarity in your code. If we try
to make a promise that cannot be fulfilled, Julia will throw an error:

julia> b::Int64 = 1.3;

ERROR: InexactError: Int64(1.3)
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We’ll learn progressively more about types in Julia in Appendices C and E.3, but for now
we’ll focus on using Julia’s built-in primitive types, which are types whose content has a direct
representation with a fixed number of bits. Julia defines a very standard set of primitive types
(signed and unsigned integers, floating point numbers, boolean values, characters, etc).

Type annotations can also be used to constrain the arguments of functions – this is a core
part of Julia’s killer “multiple dispatch” feature, in which specific versions of a function can be
called according to the types of arguments passed to it at runtime. We’ll explore this powerful
feature in greater depth in Appendix E.4, but first let’s learn about writing basic functions.

B.2 Functions and control flow

B.2.1 Operators and special functions
Julia of course comes with a standard set of arithmetic operators. They work nicely and as you
would hope, with automatic conversion of values when combining values of different types.
As a non-numerical example: when working with strings Julia defines the “times” operator (*)
as the thing that does string concatenation9, which means we can do

julia> x="Hello"; x*x

HelloHello

julia> x^4

HelloHelloHelloHello

julia> x^2.2

ERROR: MethodError: no method matching ^(::String, ::Float64) The

function `^` exists, but no method is defined for this combination of

argument types.

It also comes with a great set of standard mathematical functions (powers, logs, trig func-
tions, and so on). This includes inverse trig functions predefined, so we can already compute
𝜋: all we need to do is

julia> 2*acos(0)

3.141592653589793

While great when actually writing code, somehow I doubt you’ll be satisfied with this method
of “calculating” 𝜋.

9Perhaps you expected this to be the role played by “plus” operator, but Julia notes that when both addition
and multiplication are defined, and if one of them is not commutative, then by convention multiplication is
typically the noncommutative one.
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Active reading and... AbstractMatrix?

This is good time to mention that I expect, like with most lecture notes, you are
reading this actively! Have you used the REPL help mode to confirm that, e.g., a
UInt8 is exactly what you expect it to be? Did you find yourself surprised at the type
annotation on the argument to the built-in acos function?

B.2.2 Writing functions
Writing functions is a core part of writing Julia code, and Julia has a few different ways we can
write them. For extremely simple one-liners you can use an abbreviated notation that is exactly
like writing a mathematical formation:

julia> f(x) = 2*acos(x)

One can annotate this function with type information, but again: that’s something we’ll have
more to say about in Appendix E.4 – for now, we’ll just pinkie-promise that we won’t try to
pass a string to this function.

To do something more interesting than directly evaluating a special function, Let’s consider
a famous10 formula used to compute the digits of 𝜋, which is due to John Machin11:

𝜋 = 16 arctan 15 − 4 arctan 1
239

In the rest of this sectionwe’ll build up to an approximation of this expression (which, again,
we could directly evaluate since Julia has inverse trig functions!). I’ll be using a “Revise”-based
workflow: in the REPL I’ve used the “includet()” function on the following file:

# MachinFunction.jl

function f(x)

return 2*acos(x)

end

This behaves exactly like the one-liner above, but now I can edit the file as I go and have the
REPL keep up-to-date with the current version of the function.

B.2.3 Function arguments
Let’s first just type out Machin’s formula, but in a way which helps illustrate something about
how Julia’s function arguments work:

# MachinFunction.jl

function f(x)

# How does x behave in this context?

10“Famous”
11The same Mr. John Machin we met in Footnote 6

https://docs.julialang.org/en/v1/manual/functions/
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x = 16*atan(1/5) - 4*atan(1/239)

return x

end

In this particular function12 the input argument is not even used in the calculation; instead,
whatever x is inside the function is immediately assigned to the result of some trigonometric
calculation. Clearly the return value of this function will be 𝜋, but what happens to the x that
was passed to the function?

Julia’s function arguments are passed by “sharing.”When you pass a value to a function, the
argument names inside the function (for instance, x in f(x)) become new local names. These
new local names initially refer to the exact same values or objects that were passed in from
the calling scope, and no copy of the underlying data is automatically made just by passing
it to a function. What happens once inside the function depends on what you do with these
local names. First, you can always rebind the local name. That is, you can assign a new value
or object to a local argument name. For instance, if we pass x to a function, inside the function
we could write x = 100 or x = "hello". This rebinds the local name x within the function’s
scope to point at this new data. Such a reassignment of the local name itself never affects any
variable in the scope that called the function: the original variable outside the function will
still refer to its original value.

Second, Julia divides the world into immutable values (for instance Ints and Floats) and
mutable values (for instance, Arrays, which we will meet more properly in Appendix C). If
a local name refers to a mutable object, you can change the internal state of that object (for
instance, if the Array v is passed as an argument to a function, v[1]=100modifies one of the
elements of the array). In this case, the local name in the function and a variable name outside
the function refer to the same underlying mutable object, mutations inside the function affect
the variable in the scope that called the function.

Let’s see an example, using f(x) from the most recent version of MachinFunction.jl
above:

julia> x=0; f(x)

3.1415926535897936

julia> x

0

julia> x=f(x); x

3.1415926535897936

We clearly see that rebinding the local argument name in the function doesn’t affect the caller’s
variable.

12Which also illustrates something about the return type of some of Julia’s basic operators. Note that in Julia
something like “1/5” – the division of two integers – returns a floating point number. Other type conversions are
also happening in this expression to make sure we end up with the correct value of 𝜋.
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Mutating elements and binding names

Hold onto this thought about mutability and variable binding. After we’ve learned
about Arrays revisit this example, making sure you explore what happens when you
mutate an element of an array that you pass to a function and what happens when
you rebind the whole array to a local variable and mutate that new array!

All of this behavior is directly linked to how Julia manages the scope of variables. Functions
in Julia always introduce a new local scope, and writing functions that don’t use information
that isn’t passed to them is a great way to save yourself from several headaches down the road.
We’ll dive deeper into Julia’s scoping rules in Appendix E.2.

B.3 Hello, 𝜋! (Method 2: Computing functions)
Let’s do a little bit more work on our own to calculate 𝜋 – rather than use the special function,
let’s make use of the Madhava13 series expansion for the arc tangent,

arctan(𝑥) = 𝑥 − 𝑥3
3 + 𝑥5

5 − 𝑥7
7 +⋯

B.3.1 Our first loop!
One way we could do this is to introduce a basic for loop with some control flow:

# MachinFunction.jl

function atanSeries(x,numberOfTerms)

if numberOfTerms <= 0

error("numberOfTerms must be positive")

end

result = 0.

for i in 0:numberOfTerms-1

result += (-1)^i*x^(2*i+1) / (2*i+1)

end

return result

end

function f(x)

result = 16*atanSeries(1/5,x) - 4*atanSeries(1/239,x)

return result

end

We’ve got an if statement ensuring that we’re summing a positive number of terms. We’re also
using “0:numberOfTerms-1” to create an iterable collection – which, as you probably suspect
from the name, is a collection (like a set, or a dictionary, or many other things) that Julia knows
how to iterate over. We’ll learn more about collections in Appendix C.1, but for now we’ll just
use the above as a way of writing a for loop.

13Madhava founded the Kerala school of mathematics, which is credited (among other things!) with discover-
ing infinite series expansions for trigonometric functions. The Yuktibhasa, written around 1530, describes these
results more than a century before the work of Gregory, Leibniz, Newton, and Taylor.

https://en.wikipedia.org/wiki/Madhava_series
https://docs.julialang.org/en/v1/base/collections/
https://en.wikipedia.org/wiki/Yuktibh%C4%81%E1%B9%A3%C4%81
https://en.wikipedia.org/wiki/James_Gregory_(mathematician)
https://en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80
https://cudl.lib.cam.ac.uk/view/MS-ADD-03962/1
https://books.google.com/books?id=r-Gq9YyZYXYC&printsec=frontcover#v=onepage&q&f=false
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We can check both that the series expansion is working, and that the Machin formula
converges faster:

julia> pi - 4*atanSeries(1,10)

0.09975303466038987

julia> pi - f(10)

8.881784197001252e-16

B.4 Expressiveness in code
I imagine that many of you are quite comfortable with this style of writing a loop – perhaps the
syntax is different from other languages you’ve used, but the basic idea of explicitly stepping
through each trip through the loop, sprinkling in some “if-then” control flow, and steadily
building up an answer is probably pretty familiar. On the other hand: there’s a sense in which
the above loop is explicit in detailing the mechanics of the computation but not especially
expressive of the overall intent14. Our goal for the loop was to perform a computation for each
integer in a specified range and then sum the results. We can infer that that was the goal by
tracing the logic in our code (especially code as simple as the above) by stepping through the
loop, but Julia makes it easy to be more expressive by treating functions as “first-class citizens”
of the language.

Thatmeans that you can assign functions to variables, you can store them in a data structure,
you can pass a function as an argument to another function, you can have a function be returned
from a different function. Thus, the following code that creates a vector of functions and iterates
over them...works:

function square(x)

return x^2

end

function cube(x)

return x^3

end

operations = [square, cube, x -> x + 1] # A vector of functions

# x -> x + 1 is the notation for defining an "anonymous function"

for op in operations

println(op(1.5))

end

# This would output:

# 2.25

# 3.375

# 2.5

This enables a powerful functional programming paradigm within Julia, and many of the most
common higher-order functions – like map (which applies a function to every element of a

14This distinction is also commonly made by contrasting an imperative style that specifies how something
should be done and a declarative style that focuses on what should be done.

https://docs.julialang.org/en/v1/manual/control-flow/
https://en.wikipedia.org/wiki/Higher-order_function
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collection, filter (which selects elements based on a condition), fold and reduce (which reduce
the elements of an array to a single result by repeatedly applying an operation to combine the
elements), and others – are built into the Base module of the language.

Do I care if you write in a functional style15 or if you write raw16 loops? Nope. But program-
ming, at its heart, is an act of composition: we articulate solutions by weaving together data
structures and algorithms to accomplish some goal.Whenwe translate amathematical concept
or a physical system into code, we havemany choices tomake. Youmight opt to write your code
in an imperative style, with a sequence of explicit operations that change the program’s state.
Youmight lean into an object-oriented approach17 to dividing up the state of your program and
what pieces of it are responsible for acting on different components of that state. You might
instead prefer a more declarative style. We could, for instance, write the loop above as what it
is: the summation resulting from applying the same function to a set of numbers. That might
look more like the following, in which we define a small function that calculates each term
and then use Julia’s sum function to sum those terms over the relevant range:

julia> atanSeriesTerm(x,i) = (-1)^i*x^(2*i+1) / (2*i+1) ;

julia> atanSeries(x,n) = sum(i->atanSeriesTerm(x,i),0:n-1);

I really don’t believe any of these approaches are inherently “better” than the others. Thus,
part of our task in programming is not to adhere to a dogmatic preference, but to understand
the different ways we can encode the logic of what we want to accomplish. Different styles
might resonate more clearly or feel more natural depending on the specific problem, on your
own background, or even on the conventions of the team working together to try to create
something. The key is to be aware of these varied patterns, to choose intentionally, and to strive
for code that is both robust in its function and clear in its purpose.

Programming style?

Which version of atanSeries do you find most clearly conveys the mathematical
summation here? Why? Would something else be even better? Reflecting on such
choices, andwhy one formmight appeal over another in different contexts, is crucial
for developing your own programming style.

15Especially if you are not familiar with functional programming, you might see this nice article from Mary
Rose Cook emphasizing how one might translate the same code between imperative and functional styles of the
same code.

16If you’ve written a lot of verbose C++ code you might find Sean Parent’s “C++ Seasoning” an insightful
perspective

17We’ll see that Julia doesn’t use classes and inheritance in the same way as C++ or Python, but we’ll see in
Appendix E how we can use its powerful type system and multiple dispatch to enable robust and flexible OO-like
designs.

https://docs.julialang.org/en/v1/base/collections
https://codewords.recurse.com/issues/one/an-introduction-to-functional-programming#fnref:2
https://codewords.recurse.com/issues/one/an-introduction-to-functional-programming#fnref:2
https://www.youtube.com/watch?v=W2tWOdzgXHA


Appendix C

Composite types and data structures

In this chapter we’ll continue to explore Julia’s data structures and its powerful type system.
We’ll cover how Julia manages data structures designed to hold multiple values, and how Julia
performs iterations over such structures. Along the way, we’ll target a much older, geometric
route to approximating 𝜋.

C.1 Collections
In Julia a collection is a general term for a data structure which groups multiple values together.
A collection might be homogeneous – holding values of all the same type – or not; it might be
mutable – capable of having its values altered after the collection is created – or not; it might
be indexable – in which values can be identified by pointing to their position in the collection
– or not; and it might be associative – in which values are associated not with a position in
the collection but by some more general kind of key – or not. More specialized collections
can support even more properties, for instance enforcing a specific ordering of elements or
enforcing the uniqueness of values the collection contains. Below we’ll look at some of the
most common collections, thinking about how they combine these defining characteristics.

C.1.1 Tuples
Tuples are immutable and indexable collections that can contain heterogeneous elements. You
would typically use a tuple when you have a small group of related items that won’t change
(such as an (x,y,z) coordinate of a fixed object), or when you want to return a group of
multiple values from a function. They are declared using a syntax that looks like the argument
list to a function – indeed, the idea of a tuple is an abstraction of an argument list – with
parenthesis enclosing the tuple and values separated by commas:

julia> a = (1,1.0,"wow");

Tuples can have any number of values of different types, and are accessed by indexing. For
the sake of avoiding confusion / potential bugs, I don’t think I can emphasize the following 18

18Don’t worry: I appreciate the irony of having this module appear as “Module 0” in the table of contents.

16

https://docs.julialang.org/en/v1/base/collections/
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enough:

Don’t forget!

Julia is a 1-indexed language!

That is, you access the element of the tuple above (or, indeed, any indexable collection) by
starting with element 1 rather than element 0:

julia> println(a[1]," ",a[2]," ", a[3])

1 1.0 wow

I think there’s no need to get into arguments about what indexing style is better19: they corre-
spond to different mental models of the underlying data. Indexing starting at 1 maps nicely
onto counting and indexing in mathematical expressions; indexing starting at 0 maps nicely
onto offsets in memory in which the data is stored. Different languages have different conven-
tions, and unlike Python and C++, Julia indexes starting at 1; it might take some getting used
to if you’ve spent a lot of time with the alternative.

Functions in Julia can take both normal arguments and also keyword arguments; the exam-
ple from the manual is a function whose definition begins

function plot(x, y; style="solid", width=1, color="black")

The idea that a tuple is an abstraction of the arguments of a function means that we should
expect that Julia also has the notion of a named tuple. These can have their values accessed
either by index or by name, as in the following:

julia> b = (first=1,second="two");

julia> println(b[1]," ",b.second)

1 two

C.1.2 Arrays, Vectors, and Matrices

Arrays aremutable and indexable collections that contain homogeneous values. Arrays are a
workhorse of computational physics – they can store lists of positions of particles evolving in
time, or the values of a grid representing evolving density and velocity fields, to say nothing of
the many applications of Arrays in the context of applying linear algebra to physical problems.
They can be constructed with square brackets and commas, like so:

19For a contrasting view, note that people much smarter than me have much stronger opinions.

https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments
https://www.cs.utexas.edu/~EWD/transcriptions/EWD08xx/EWD831.html
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julia> a=[10,100,1000];

julia> typeof(a)

Vector{Int64} (alias for ArrayInt64, 1)

We already learn a few things: Arrays can be not only single-dimensional but also used to repre-
sent collections that can be indexed on a multidimensional grid (including a grid of dimension
zero), and in Julia a “Vector” is just an alias for an existing type: a one-dimensional array.While
thinking about Arrays as homogeneous, it’s important to remember that that does not mean
that all of its values must be of the same primitive type!

A homogeneous collection... but of what?

What is the type of the [1,pi] Array? What about the [1,pi,"pi"] Array?

Julia is flexible, and if you initialize an array with mixed types, it will determine a suitable
shared supertype (which might be Any) to hold them. This has important performance impli-
cations, but can also sometimes be very convenient.

Just as Vector is an alias for a one-dimensional Array, in Julia a Matrix is just a two-
dimensional array. Matrices can be constructed in a variety of ways, and an array can be of
any dimensionality and size can be constructed with all zeros (or all ones) by using built-in
functions. For instance, a two-dimensional Array with two rows and four columns could be
made by writing

julia> zeros(Float64, (2,4))

2×4 MatrixFloat64:

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

Since Arrays are mutable, one could now populate the elements of this Array however you
wanted. Julia also has a nice syntax by which arguments separated by semicolons (or newlines)
imply “vertical concatenation” and spaces (or double semicolons) imply “horizontal concate-
nation” – we won’t focus on this now, but as always: the language documentation will be your
friend if youwant to quickly constructmatrices or higher-dimensional arrays quickly and easily
using this syntax.

Efficiently working with matrices

Different programming languages lay out matrices (and higher-dimensional arrays)
in memory differently, choosing either row-major or column-major formats. Julia is
column-major. In practice, that means that if you are iterating through the elements
of a multi-dimensional array, your inner-most loop (the index which changes “most
rapidly”) should correspond to the left-most index.

https://docs.julialang.org/en/v1/manual/faq/#faq-array-0dim
https://docs.julialang.org/en/v1/manual/faq/#faq-array-0dim
https://docs.julialang.org/en/v1/manual/arrays/
https://docs.julialang.org/en/v1/manual/arrays/
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C.1.3 Functions on Arrays

Julia comes with many built-in functions for working with Arrays and other collections. For
instance, if you have a Vector but want a sorted version of it you could simply:

julia> a=[4,1,3,2]; b=sort(a);

Our original array is unsorted20, and we’ve created a new array which holds the sorted version.
We could also call a completely different function that, rather than returning a copy of the
sorted arraymutates the array we pass in:

julia> a=[4,1,3,2]; sort!(a);

A rich set of functions is available for array manipulation. These include operations for
querying their size, appending new values to them, sorting them, getting the index of particular
values or filtering by arbitrary conditions, or getting “views” (efficient subsections of arrays that
don’t involve copying data). When working with Arrays, ask whether some of these standard
algorithms might be ready and available to do the task for you!

Idiomatic naming convention

The above functions demonstrate a convention found throughout Julia and that you
should adhere to: if you write a function that alters the values of mutable arguments
passed to it, put an exclamation mark at the end of the function’s name!

Julia also has a convenient options for operating on Arrays. Standard arithmetic operators
like + or * often have specific mathematical meanings when applied to arrays as a whole, and
these will work as expected in Julia (i.e., standard matrix multiplication can be written as A*B).
One can also easily specify that an operation should be performed on all elements of an array
using a “dot” syntax (i.e., putting a dot before the operator):

julia> a = [1 2 3]; a .+ 1

1×3 MatrixInt64:

2 3 4

In fact, this “vectorized” syntax can be used not just for the standard arithmetic and comparison
operators, but with any function in Julia! Thus:

20Well, I suppose every integer sequence is sorted according to some function, but it’s certainly unsorted with
respect to “hey, I just want this sorted normally!”

https://docs.julialang.org/en/v1/base/arrays/#Views-(SubArrays-and-other-view-types)
https://docs.julialang.org/en/v1/manual/functions/#man-vectorized
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julia> g(x) = cos(x)+14; g.(a)

1×3 MatrixFloat64:

14.5403 13.5839 13.01

C.1.4 Dictionaries, Sets, and the rest

A bit more briefly, a Dict is amutable and associative collection that maps keys of a consistent
type K to values of a consistent type V. It is the data structure to use when you need to store and
look up values based on a unique identifier (a key) – like a word and its definition, or a user
ID and their profile information – rather than by an index. They are best when you need fast
access to the data associated with specific labels, and do not necessarily care about the order
in which the key/value pairs are stored. They can be created and accessed like this:

julia> indexingStyle = Dict("C++"=>0,"Python"=>0,"Scheme"=>0);

julia> indexingStyle["Scheme"]

0

You can get a collection of keys or values in a Dict by calling the appropriate function. Since
Dicts are mutable, we can (for instance), add new key/value pairs to them by direct assignment
(the idiomatic approach) or by using a function we’ve already encountered:

julia> indexingStyle["Julia"]=1;

julia> push!(indexingStyle,"Smalltalk"=>1);

A Set acts like a set, serving as a collection of unique values. They are the collection of
choice if you just need to store a collection of unique items, and if all you want is to know if
items are present in the set (or, of course, if you want to perform standard union/intersection
kinds of operations you expect to be able to do).

julia> s = Set("Daniel Sussman")

SetChar with 11 elements:

Notice, by the way, what this example teaches us about Strings: in Julia, strings are just a kind
of collection of characters. Thus, while they primarily represent text, a String behaves like an
ordered, immutable collection of characters – you can check its length, access parts of it, and
iterate over it just like a collection. Speaking of...

https://docs.julialang.org/en/v1/base/collections/#Base.keys
https://en.wikipedia.org/wiki/Set_(mathematics)
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C.2 Iteration and Loops

Another key feature of collections – so important that it warrants its own section, however
brief! – is that they are iterable. While we gave an example of a simple for-loop earlier, here
we’ll explore some of the primary ways of building loops in Julia. Perhaps the most basic is a
standard “while” loop:

function testWhileLoop()

i = 1

while i < 10

if i % 2 == 1

i +=1

continue

end

println(i)

if i >= 7

break

end

i += 1

end

return i

end

This has a lot of features that should be familiar: a loop that continues until some expression
evaluates to false, the continue statement to advance to the next iteration, and the break

statement to exit the loop early.
I rarely directly use while loops21, but iterating through the same basic set of operations on

well laid out data happens all the time. A fundamental version of this is a for loop that iterates
once per value in a collection. It can be convenient to either have direct access to the 𝑛th value
in the collection, or to the index associated with that value, and these are two idiomatic ways
to iterate through an indexable collection:

function testForLoops()

A = [1,2,3,4,5,6,7,8,9,10]

for a in A

# do something!

end

for i in eachindex(A)

# do something with i

# (including, of course, accessing A[i])

end

end

If you want to iterate through an associative collection, say A, you can also use the keys(A) and
values(A) functions, which return iterators over the keys and values (respectively – I bet you
can guess which is which) of the collection. An iterator is an object that produces a sequence
of values one at a time, often on demand, without necessarily storing all of them in memory at
once.

21I Don’t trust ’em! Probably because I’ve used them incorrectly too many times...



22 APPENDIX C. COMPOSITE TYPES AND DATA STRUCTURES

C.2.1 Ranges

What about when you want to iterate through some sort of sequence of numbers, but you
don’t feel like you really need to create an object which holds all of those values? For instance,
doesn’t it seem silly to create an array of the integers from one to ten just to have a loop that
executes ten times? Ranges are an iterable way of representing such a sequence, and they
are very memory efficient: they don’t need to store the values in the sequence, just the rules
needed to generate them. There are a number of ways of constructing Ranges – including for
representing sequences that are either linearly or logarithmically spaced – but the most explicit
is to call range with three keyword arguments (any three out of “start,” “stop,” “length,” and
“step”). There are various assumed defaults depending on which three keywords you use. You
can also use a colon to denote a (start):(stop) range (in steps of one), or a (start):(step):(stop)
range. Among other things22 ranges can be used to write simple for loops, such as this one
which iterates from one to five:

julia> for i in 1:5

println(i+1)

end

C.2.2 Collecting and Comprehending

Given a collection or an iterator, Julia’s collect function will return an Array containing all
of its items. This is, for instance, one helpful way of quickly constructing Arrays. For instance:

julia> a = collect(1:0.25:1.5)

3-element Vector{Float64}

1.0

1.25

1.5

An even more powerful and general way to construct Arrays is to use the comprehension
syntax. The idea is to write something like

julia> a = [ f(x) for x in xIterable];

In this example, an array will be generated whose elements correspond to the application of
some function f to each value in the xIterable – this can be anything that can be iterated over,
and in practice will most typically be a collection like range. As implied by the variable name,
there is a similar syntax for using comprehensions to build multidimensional arrays.

22Notably, they are also fundamental for getting slices of an Array

https://docs.julialang.org/en/v1/base/math/#Base.range
https://docs.julialang.org/en/v1/manual/arrays/#man-comprehensions
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C.3 Structs and constructors

More general than the collections discussed above is a Composite type. These can be any group
of named fields (each of whichmay ormay not be annotated as being a particular type, with the
default being Any), and which taken as a whole can be treated as a single value. User-defined
composite types are defined by using the struct keyword, like so:

julia> struct Particle

mass::Float64

charge::Float64

funnyName::String

end

Best practices

Annotate the fields of your structs with concrete types whenever possible! When
Julia knows the concrete type of every field, it can lay out the data in memory
efficiently and predictably.

By default structs are immutable, and the default way of constructing them is by calling
its type name as a function, providing arguments for each field in the order they are defined.
Fields are then accessed by name:

julia> a = Particle(1836.152673426,1.0,"proton")

julia> a.charge

1.0

Structs can bemademutable just by using the mutable keyword in their definition, for instance:

julia> mutable struct ParticlePosition

x::Float64

y::Float64

z::Float64

end

Naturally, you can write functions that take instances of your custom structs as arguments.
We’ll touch on this more when we discuss multiple dispatch in Appendix E.4, but you can also
extend existing methods to let them operate on your custom composite types. Julia also makes
it easy to define alternate ways of creating instances of your structs: while Julia provides a
default constructor that accepts arguments for each field in order, you can also add convenient
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outer23 constructors. These are simply functions (often using the same name as the struct) that
return a new instance of the struct in question.

As an example of some of these ideas, and in preparation for the geometric approximation
to 𝜋 we’re about to do, let’s define a “PolygonVertex” as being a location in a two-dimensional
space. For later convenience, I’ll define a constructor that takes an angle and returns a Poly-
gonVertex at that angle relative to the 𝑥-axis and on the unit circle. We’ll further define a
function that defines the norm of a PolygonVertex to be its distance from the origin. Finally,
in a slight abuse of the intention of the data structure24, create a new method for the binary
subtraction operator.

struct PolygonVertex

x::Float64

y::Float64

end

PolygonVertex(theta) = PolygonVertex(cos(theta),sin(theta))

function norm(a::PolygonVertex)

return sqrt(a.x*a.x+a.y*a.y)

end

import Base: - # explicitly import to add a method

function -(a::PolygonVertex,b::PolygonVertex)

return PolygonVertex(a.x-b.x,a.y-b.y)

end

C.4 Hello, 𝜋! (Method 3: Using geometry)

Figure C.1: Archimedes, or per-
haps a self-portrait by Jusepe
de Ribera; funny how it’s hard
to tell sometimes.

Instead of relying on modern25 calculus or pre-computed
forward and inverse trigonometric functions, let’s leap back-
wards in time to consider Archimedes’ elegantly geometric ap-
proach to calculating𝜋. Among hismany remarkable achieve-
ments was his use of the method of exhaustion. By care-
fully calculating the perimeters of regular polygons either in-
scribed within or circumscribed around a circle, he was able
to bound the value of 𝜋 by considering sequences of poly-
gons with increasing numbers of sides. By considering poly-
gons of up to 96 sides he came up with his famous bound:
223
71

< 𝜋 < 22/7. An accuracy of three digits – not too bad for
around 250 BC! A fourth digit wouldn’t be recorded for an-
other 400 years (although that fourth digit may have actually
been obtained earlier)!

Rather than apply the full method of exhaustion to find
bounds for the value of 𝜋, let’s just take the simpler approach of looking at the perimeter of

23Yes, there are also inner constructors
24Is the difference of two vertices, which presumably I’m about to interpret as a vector, really another Poly-

gonVertex? It certainly shares exactly the same fields of the same types, but...
25Well, to the extent that the 17th and 18th century counts as modern!

https://en.wikipedia.org/wiki/Jusepe_de_Ribera
https://en.wikipedia.org/wiki/Jusepe_de_Ribera
https://en.wikipedia.org/wiki/Method_of_exhaustion
https://en.wikipedia.org/wiki/Pi#History
https://docs.julialang.org/en/v1/manual/constructors/#man-inner-constructor-methods
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inscribed regular polygons as the number of sides gets large. Making use of our PolygonVertex
as defined above, we can easily write a pair of relevant functions. The first will be a straightfor-
ward loop over the vertices in a polygon – our function will assume that a “polygon” is some
iterable collection of PolygonVertex values – and calculates the total perimeter by summing
up the distance between consecutive vertices. We will call this with a second function which
does the work of constructing a regular polygon inscribed in the unit circle (making use of
the range and comprehension techniques we just learned) calls the perimeter function, and
returns half of the result:

function calculatePerimeter(polygon)

result = zero(polygon[1].x);

lastPoint = last(polygon)

for currentPoint in polygon

distance = currentPoint - lastPoint

result += norm(distance)

lastPoint = currentPoint

end

return result

end

function archimedes(n)

angles=range(0,step=2pi/n,length=n)

pts = [PolygonVertex(θ) for θ in angles]

return calculatePerimeter(pts)/2

end

We can now call this function from the REPL and confirm that as we increase the argu-
ment of the archimedes function we get an increasingly accurate estimate for 𝜋! Here, again,
one might pause to recall our discussion in Appendix B.4: the calculatePerimeter function
employs a common looping pattern that involves managing state from the previous iteration
(the lastPoint). Could we, perhaps, be more expressive in our code by recognizing that our
loop in the perimeter function can be written using a standard algorithm? Perhaps:

function calculatePerimeter2(polygon)

#That's a rotate!

rotatedPolygon = circshift(polygon,1)

displacements = polygon .- rotatedPolygon

return mapreduce(norm, +, displacements)

end

One could compress this even further, writing the mapreduce with the help of an anony-
mous function that handles the vertex-loop-logic for us:

function calculatePerimeter3(polygon)

return mapreduce(i-> norm(polygon[i] - polygon[mod1(i-1,

length(polygon))]), +, 1:length(polygon))

end

The goal, I need to emphasize, is not to get really good at writing elaborate, code-golf-style
one-liners. As before, we should think hard about what version of a function simultaneously
optimizes our goal of writing robust, clear, and expressive code.
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C.4.1 A geometric solution
The persnickety reader will complain that our calculation above still relied on having built-in
trigonometric functions available to us. And that, after all, is still basically cheating. Fortunately,
Archimedes was quite clever, and his construction did not actually involve working out the
locations of the vertices of inscribed polygons. Instead, he came up with an elegant geometric
argument: by drawing the correct triangles, he showed that if you start with an inscribed
polygon with 𝑁 sides and side length 𝑑𝑁, the inscribed polygon of 2𝑁 sides will have side
length

𝑑2𝑁 = (2 − 2√1 −
𝑑2𝑁
4 )

1/2

.

So, starting out with a square inscribed in the unit circle (each of whose sides is clearly√2), if
you are good at calculating roots you can get the perimeter of polygons with 4, 8, 16,… sides.
Here’s an implementation that starts with the hexagon (as Archimedes did):

# iterative Archimedes method

function iterativeArchimedes(doublings)

numberOfSides::BigInt = 6

sideLengthSquared::BigFloat = 1.0

for i in 1:doublings

numberOfSides *= 2

sideLengthSquared = 2-2sqrt(1-sideLengthSquared/4)

end

return numberOfSides*sqrt(sideLengthSquared)/2

end

The Chinese mathematician Zu Chongzhi obtained a bound for 𝜋 that was accurate to
seven digits in the 5th century – this stood as the record level of precision for hundreds of years.
His original calculations are lost, but later authors suggested that hemay have used an indepen-
dently discovered version of Archimedes’ method (computing areas rather than perimeters).
If this was indeed his approach26, obtaining the first six digits of 𝜋 after the decimal would
have required starting with a hexagon and using 12 doubling steps (ending with a 24576-gon!).
Much later, Ludolph van Ceulen spent a large amount of his life basically using Archimedes’
method, culminating in a 35-digit estimate of 𝜋 in 1593. This “Ludolphian number” would
have involved calculating the properties of polygons with 262 sides!

C.5 Naming conventions and commenting code
For truly short collections of functions it barely matters what style you write in, or how you
choose your variable and functions names, etc – anyone familiar with the language would
be able to glance at the code to see what it does. As you write more complex programs, clear
communication of the program’s intent becomes increasingly important. This is not just being

26The doubt basically being related to the existing booking technology for keeping track of the intermediate
calculations while tediously evaluating square roots.

https://mathshistory.st-andrews.ac.uk/Biographies/Zu_Chongzhi/
https://en.wikipedia.org/wiki/Liu_Hui%27s_%CF%80_algorithm
https://en.wikipedia.org/wiki/Ludolph_van_Ceulen
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clearwith the compiler aboutwhat youwant to do, but also being clearwith your collaborators27.
Clear communication of this sort occurs by different means.

For instance, you should try to write “self-documenting” code by choosing descriptive
names for your variables, functions, and types. Good names – descriptive nouns for types
and variables, active verbs for functions – significantly reduce the need for extra explanatory
comments by making the code’s purpose intuitive and easily readable. Consider the following
two functions:

julia> flabbergast(moose1,moose2) = moose2/moose1;

julia> computeAcceleration(force,mass) = force/mass;

If you were working on a physics simulation and you were to encounter the first function (or,
more realistically, a similar but more complicated example like it), you would likely be a bit
flabbergasted, yourself. You would then have to work through the logic of what the function
does, where it is called, and how the results are used. If, on the other hand, you encountered the
second function in the same context, you would immediately have the correct mental model for
what the function does, the context it is used in, and what kinds of arguments you should pass
in. Importantly: the computer does not care which of these two functions you write – to the
compiler they are the same! Make sure you are writing programs that can be read by humans,
and trust the compiler to do the translation to the computer for you.

Julia has a style guide that includes established naming conventions that also help. We
already saw an important one: functions that modify their arguments typically end with an
exclamation mark (e.g., sort!). In Julia type names are usually written in upper camel case
(like PolygonVertex), whereas function and variable names are usually written in all lower-
case or with snake_case (like calculateperimeter or element_type 28 ). Adhering to these
conventions makes your Julia code more accessible and idiomatic, and as I said above – the
conventions of your team should be an important factor in determining the style of your code!

Please forgive the mild hypocrisy

In these notes sometimes I will occasionally use variables like x and n when some-
thing more descriptive would have been better. This is usually because I want to
avoid typesetting individual lines of code across multiple lines of texta.

ahopefully in not too many cases was it just laziness! Speaking of... please don’t name your
function like myFunction3!

While good naming conventions certainly reduces the burden, comments still play a crucial
role. Avoid cluttering your code with comments that merely restate what the code clearly does.
Effective comments typically focus on thewhy of your code – this is especially true for detailing

27which includes your future self
28Something I still struggle with! I personally find it hard to read code with mixed camel and all-lowercase and

snake case conventions, and in many other contexts this mixing is discouraged. In the Julia community, however,
it is idiomatic, and I should probably go back and re-write a lot of these names

https://docs.julialang.org/en/v1/manual/style-guide/
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Snake_case
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particularly intricate code logic, important assumptions, and non-obvious design decisions. In
Julia, single-line comments (of which we’ve seen a few in the examples above) start with an
octothorpe, #. Longer comments can be made by enclosing (multiple) lines of interest in the
hash-equal combo: #= ... =#. Finally, as you define functions and types that are part of larger
codebases, consider writing documentation. Documentation for functions and types can be
made by enclosing text – which can be written in a flavor of markdown – in triple quotes:

"""

calculatePerimeter3(polygon::AbstractVector{PolygonVertex}) -> Float64

Calculates the perimeter of a `polygon` defined by an ordered vector of

`PolygonVertex`

objects.

The perimeter is computed by summing the Euclidean distances between

consecutive pairs of vertices. This version uses `mapreduce` with an

anonymous function

for a compact representation.

# Arguments

- `polygon`: An `AbstractVector` where each element is a `PolygonVertex`.

The vertices are assumed to be ordered.

# Returns

- `Float64`: The total perimeter of the polygon.

# Examples

```julia-repl

julia> square = [PolygonVertex(0.0,0.0), PolygonVertex(1.0,0.0),

PolygonVertex(1.0,1.0), PolygonVertex(0.0,1.0)];

julia> calculatePerimeter3(square)

4.0

```

"""

function calculatePerimeter3(polygon)

return mapreduce(i-> norm(polygon[i] - polygon[mod1(i-1,

length(polygon))]), +, 1:length(polygon))

end

This documentation can be automatically processed into documentation and is invaluable
for larger projects. You’ll also note that if you write this kind of documentation for your func-
tions, then in the REPL you can use help mode to get back this information – that’s handy for
your future self, and absolutely crucial for someone else who might be interested in using your
work 29! In that context, it is useful to typically include standard sections for your docstrings,
like the # Arguments (to clarify inputs), # Returns (to specify outputs), and # Examples (to
demonstrate usage and allow for automated testing) in the above.

29Sadly, you just know that whoever wrote that flabbergastingmoose function did not write any documentation
to go along with it.

https://docs.julialang.org/en/v1/manual/documentation/
https://docs.julialang.org/en/v1/stdlib/Markdown/#markdown_stdlib


Appendix D

Data, plots, and visualization

Perhaps you are still a bit worried about our calculation of 𝜋? We may have gotten away from
using trig functions, but taking roots is still... well, it’s doable, but we’re still relying on a built-in
mathematical function, and is that not also cheating? Maybe less so than using acos, but at
least a little bit?

We’ve already met many of the most important aspects of the Julia language when it comes
to writing scripts and simple functions using a variety of built-in and custom data structures,
and in this section we’re going to focus on how to handle data, and how to turn that data into
plots and other visualizations. This probably feels a bit different in character from the focus of
the previous sections, but make no mistake: plotting and visualizations are some of the most
important aspects of computational research! They let us compress and efficiently communi-
cate enormous amounts of information quickly, and are invaluable in testing hypothesis about
the systems we’re studying.

As we go, we’ll estimate 𝜋 by a simpleMonte Carlo approach. This is the name for a broad
class of algorithms that use repeated sampling of random numbers to obtain numerical esti-
mates of different quantities30, and we’ll learn a lot more about these approaches later in this
class (see ??)!

D.1 Reading and writing data
Data comes in many flavors, and it is non-trivial to write an overview of how it should be
handled without knowing the specifics – is the data we’re interested in reading and writing to
a file a set of 2D or 3D points that will be used to make a plot? Is it several gigabytes of data in
a recurring pattern (for instance, snapshots of a large number of simulated particle positions
at different times)? Is it a massive atlas mapping voxels to cell types in a mouse brain? Is it
a heterogeneous data set where for any particular entry some of the expected attributes are
missing?

Eventually, depending on your projects, you will probably want to dig into packages de-
signed to help with tabular data in easy-to-read formats (like CSV.jl), or provide more general

30The name for these methods was coined by physicist Nicholas Metropolis during World War II – apparently
fellow physicist Stanislaw Ulam (who together with von Neumann pioneered the modern version of Monte Carlo
methods) had an uncle often gambled at the Monte Carlo Casino in Monaco.

29

https://github.com/JuliaData/CSV.jl
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data science tools (like DataFrames.jl), or to deal with data in a variety of other common data
formats. I’m not going to try to cover all of these cases here. Instead, I am going to emphasize
the absolute basics built into the Base and Standard Library: opening files, reading and writing
simple delimited files, and so on.

In preparation for what we’re going to do later, let’s write a few helper functions that for
the time being we’ll use to generate some random “data:”

generatePoint(L) = rand(Float64,2) .*L .-L/2

throwPointsDown(n,L) = [generatePoint(L) for i in 1:n]

The first function uses the rand function to generate a 2-element Vector of positions, using the
broadcasting “dot” syntax to scale and shift the output so that each point lies in a square of
side length 𝐿 centered at the origin. The second just uses a comprehension to create an Array
of such points of whatever size we want.

D.1.1 File input and output
Perhaps the most fundamental file operation is just writing to a file and then reading it back.
As in many other languages, Julia treats file operations as interactions with an “I/O stream.”
The standard way to ensure that a file is correctly closed after interacting with it is to use an
“open() block” syntax. It looks like this, opening the file from the current directory in write
("w") mode:

julia> open("data.txt","w") do io

println(io,"Text")

println(io,"Text and data:", 3.14)

write(io, "writes binary representation")

end

Calling the stream “io” above is just by convention. For simple text we can use the println
function. The write function writes the raw byte representation of its second argument. For
strings, this just means writing the text bytes without adding a newline, but it can be used to
write other types as well. It’s good to know that this exists, but you might instead explore the
Serialization functions or use some of the packages mentioned above for handling arbitrary
data if you need to.

Reading this data back is similar. We could open the file in read ("r") mode and process it
line by line:

julia> open("data.txt","r") do io

for line in eachline(io)

print(line)

end

end

Or we could read the entire file into a single string:

https://dataframes.juliadata.org/stable/
https://github.com/JuliaIO
https://github.com/JuliaIO
https://docs.julialang.org/en/v1/stdlib/Random/#Base.rand
https://docs.julialang.org/en/v1/base/io-network/#Base.write
https://docs.julialang.org/en/v1/stdlib/Serialization/
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julia> content = open("data.txt","r") do io

read(io,String)

end

D.1.2 Reading and writing simple delimited data

Just with the read/write capabilities from the above, we could write functions that (a) take a
multidimensional array of data and save it in something like a comma-separated format and
then (b) load such files and carefully parse what we know the format to be to turn it back into
data of the sort we saved. But we’re not here to re-invent the wheel. For structured data – for
instance, the output of our throwPointsDown function, which returns a vector of 2-element
vectors – the DelimitedFilesmodule in the standard library is very convenient. We first need
to tell Julia that we want to use the module, but then saving our data is simple:

julia> using DelimitedFiles

julia> writedlm("scatterPoints.txt",throwPointsDown(1000,2),",")

If you’re following along, you’ll now find a file with 1000 rows, each of which contains two
numbers separated by a comma.

Reading delimited data from a file is just as easy:

julia> dataRead = readdlm("scatterPoints.txt",',');

This reads in the data as amatrix – Julia can’t know here what exact data structure was used
when you were saving the file, so if we wanted to wrangle it back into exactly the structure
we saved it as we would have to do a bit more work. Notice that there is a slight asymmetry
between these functions: writedlm allows a string as a delimiter (e.g., "," or "\t" or " banana

"), while readdlm expects a single character (e.g., ',' or '\t').

Save your data before you plot!

A tip for your computational workflow: if generating data for a plot involves sig-
nificant calculation, save that data to a file first. This decouples the data generation
from your visualization of it. You can then quickly load the data and iterate on plot
aesthetics without the frustration of re-running lengthy computations every time
you or your collaborator makes a request likea “Perhaps that should be a dot-dashed
line that is 20% thinner?” or “Can we just tweak the color scheme?”

aSurely not something I’ve ever said before, of course.

https://docs.julialang.org/en/v1/stdlib/DelimitedFiles/
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D.2 Visualizing data

Visualizing data is an important skill, and one could easily write books about the visual pre-
sentation of information. This section is not going to try to teach you how to make beautiful
figures, or try to dictate best practices. Nor is it going to be a comprehensive guide to the many
ways to make plots in Julia. It will focus on the basics: visualizing data and making simple but
informative plots using one of the many options Julia presents to us.

D.2.1 Julia’s plotting ecosystem

At first, Julia’s ecosystem of plotting packages can be quite daunting – there isn’t just a plot
command you can pull off the shelf. Rather than having a built-in plotting library, there are
numerous packages we can add. Many of these operate on a “frontend/backend” model. The
frontend defines the syntax you use to make figures– what functions you call, what options you
can specify, etc – and then passes that information to the backend. The backend is responsible
for taking the information from the frontend and doing something with it – saving a plot to
a file, or drawing it on screen, or creating an interactive window, etc. Some backends excel
at creating high quality vector graphics; others might be specialized for creating embeddable
components for a website; yet another might be best for rendering complex 3D scenes on the
fly.When it comes to crafting extremely detailed figures this model is fantastic – it lets you pick
exactly the right tool for the job.

When you’re just starting out, though, youmight feel beset by the paradox of choice. Should
you use Plots.jl or Makie or Gadfly.jl or PGFPlotsX.jl or Gaston.jl or... It’s a lot to choose from,
especially before you have a lot of context and experience with which to help judge the pros
and cons. In the spirit of this section I’m just going to put a lot of options in a list and use a
random number generator to pick a plotting package to focus on31: Oh! It turns out we’ll be
usingMakie! See this “beautiful Makie” site for a sample of cool things other people havemade
with this plotting package.

Makie offers a unified ecosystem – the same frontend API is used by all of the backends.
Below we’ll focus on two backends: CairoMakie, which is excellent for static 2D graphics, and
GLMakie, which is excellent for interactive graphics and 3D plots and figures. The documen-
tation and available tutorials are quite helpful, but I’ll also try to highlight some of the basics
just below. First to add these packages we can go to the package manager32 in the REPL

(@v1.x) pkg> add CairoMakie GLMakie

These will take a bit of time to install, but we only have to do that once.

31Just kidding! Or rather, partially kidding – the RNG I used was not an unbiased one.
32I’m adding this to the default environment here – in general we want to keep the default environment as

light as possible, so you might consider already setting up other environments. We’ll learn more about this in
Appendix E.1

https://www.edwardtufte.com/book/the-visual-display-of-quantitative-information/
https://www.principiae.be/pdfs/TM&Th-samplepages.pdf
https://www.amazon.com/Functional-Art-introduction-information-visualization/dp/B00ME3M3UG
https://www.amazon.com/Functional-Art-introduction-information-visualization/dp/B00ME3M3UG
https://link.springer.com/book/10.1007/0-387-28695-0
https://en.wikipedia.org/wiki/The_Paradox_of_Choice
https://docs.juliaplots.org/stable/
https://docs.makie.org/stable/
https://gadflyjl.org/stable/
https://github.com/KristofferC/PGFPlotsX.jl/tree/master
https://github.com/mbaz/Gaston.jl/tree/master
https://beautiful.makie.org/dev/
https://docs.makie.org/stable/tutorials/getting-started
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D.2.2 A simple scatter plot
As a first step, we’re going to make a simple scatter plot of the points that we “threw down” just
above. To see some of the options available to us, and to emphasize that it is straightforward
to plot multiple datasets in the same figure, let’s first define a function33 which will let us
determine which points are inside of and outside of the unit circle:

isInUnitCircle(point) = sum(point .* point) < 1.

Next, we’ll take our own medicine and load some of the data we saved above. There’s
probably a better way to do this, but let’s be very explicit in wrangling our data into a form that
Makie can easily work with. We’ll use the filter function to make two sets of points – inside
and outside the circle. Makie often works best with its own geometry types (like “Point2f” for
2D points), so we’ll use a simple comprehension to make arrays of them.

using CairoMakie

interior = filter(isInUnitCircle,eachrow(dataRead))

exterior = filter(!isInUnitCircle,eachrow(dataRead))

#Convert to Makie coordinates

inpoints = [Point2f(p[1],p[2]) for p in interior]

outpoints = [Point2f(p[1],p[2]) for p in exterior]

Here we’ve used one of the many helpful functions that Julia has built-in (“eachrow”). While
we could have used, e.g., array slices to achieve this, eachrow serves as a good reminder of
the many functions of convenience available in Jullia. How to learn about them? As always:
reading the (friendly) manual.

All of that was just to get an array of a type that Makie easily plots – if we didn’t care about
what the data was we could have just as well been making a data set like

julia> pointsToPlot = [Point2f(rand(),rand()) for i in 1:100];

How are we going to use this data structure to make a plot? Makie uses a hierarchical object
system to create plots – thismakes it extremely composable (i.e., it allows you to build extremely
complex figures by composing together many simpler elements), but it might take some getting
used to. The core of this hierarchy involves Figure, Axis, and Plot. A Figure is the top-level
container for everything, handles overall layout, and holds some global attributes (for instance,
the size or resolution of the overall figure). An Axis34 defines a coordinate system that canmap
data values to positions within the Axis’ boundaries. The Axis is also responsible for drawing
decorations (axis and plot labels, tick marks, etc), and it acts as a container for Plot objects. A
Plot is the visual representation of the data – the heatmap or the points or the lines – and as
such it holds data-specific attributes like the plotmarkers to use or the color and thickness of
lines to draw.

Let’s set up a simple version of this. First, we’llmake aFigurewith only the default attributes,
and then create an Axis that will live inside the figure. We’ll tell it that it lives in the first row

33This could also been written, e.g., as sum(point.^2) < 1.0 or point[1]^2 + point[2]^2 < 1.0 or...
34And some other types, like Slider or Legend, but Axis is the one we’ll focus on.

https://docs.julialang.org/en/v1/
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and first column of the figure (default Figures are laid out in a grid), and give it a few attributes
(including a “DataAspect()”, which just means we want the figure to have the same aspect
ratio as the ranges that the data covers).

fig = Figure()

ax = Axis(fig[1,1],title = "random points",

xlabel = "X-axis", ylabel= "Y-axis",

aspect = DataAspect())

We will then use the scatter function, one of the basic plotting functions, to make a Plot.
Notice thatwe’re using a function definedwith the usual “exclamationmarks indicate functions
that mutate arguments” – in this case we’re modifying the axis that lives inside the figure. We
will do this twice, giving our two sets of points different colors:

scatter!(ax, inpoints, color = :darkorange)

scatter!(ax, outpoints, color = :steelblue)

Wecould stophere and askMakie to display the figure (or save itwith the save("filename",
fig) command). Let’s mutate the axis one more time and use the poly! function to also draw
a thin circle, and then display the figure:

center = Point2f(0.,0.)

circle = Circle(center,1.0)

poly!(ax, circle, color = (:red, .1),

strokecolor = :black, strokewidth = .5)

display(fig)

Figure D.1: Points scattered in a square close to the origin.

The result is in Fig. D.1; not the world’s most amazing plot, but not the worst, either! Visu-
ally, the ratio of the number of orange points to the total number of points gives an intuitive
suggestion of how we could estimate 𝜋 using this kind of random deposition of points.
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D.3 Hello, 𝜋! (Method 4: Using noise)
Let’s take that visual suggestion and actually generate some estimates of 𝜋! Let’s first write a
quick function35 that will take a set of points and determine the fraction of them that are inside
the unit circle:

function fractionInUnitCircle(points)

# return count(isInUnitCircle,points)/length(points)

result = 0.0

for p in points

if isInUnitCircle(p)

result += 1.0

end

end

return result/length(points)

end

Geometrically, it’s clear that whatever fraction is returned should be one quarter of our
estimate of 𝜋. Let’s write a function that accepts two parameters – a number of points to throw
down, and a number of trials to run – and uses some of the basic features of the Statistics
library to estimate 𝜋.

using Statistics # part of the standard library

function estimatePi(n,trials)

data = [4*fractionInUnitCircle(throwPointsDown(n,2)) for trial in

1:trials]

return (mean(data),var(data))

end

Given this basic function, I called it a bunch of times for various values of 𝑛 and the number
of trials to average over (actually, I wrote a function that would do this for me, and I was
extremely lazy and called it “est” – not very good naming on my part! – which returns a Vector
of Vector of (Int64, Int64, Float64) tuples). Really I just wanted to demonstrate that we can
easily make a 3D version of a scatter plot. To do so, though, we have to switch from using

CairoMakie to using GLMakie. The syntax, though, is otherwise the same. Here is the plotting
code, where I’m introducing just a few of the options we have to style our plots:

using GLMakie

fig=Figure(fontsize = 24)

ax=Axis3(fig[1,1],xlabel="N", ylabel="trials",zlabel="estimate of pi")

for set in est()

scatter!(ax,set, markersize = 25)

end

The result is the most naive plot indicating our estimate of 𝜋, shown in Fig. D.2. It looks
terrible, but at least we can tell that 𝜋 is somewhere between 2.8 and 3.2.

35You can see that this block includes both an explicit “loop over the elements and use a counter to determine
the number” and a commented-out version that uses the count function. I’ll stop belaboring the point that there
are many ways to write all of these functions, and that we should take some time to consider why we’re writing
whatever version we choose.
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Figure D.2: A 3D plot estimating 𝜋 as a function of number of points thrown down in a square
and the number of trials. This plot is not meant to look good (and it doesn’t).

Plots as hypotheses

Plotting data is a key skill. When we are writing papers we can use plots to commu-
nicate our findings, compress huge amounts of information, and tell entire stories.
During the research process itself, though, plots also serve a vital role in both the ex-
ploration and understanding of the system under study. I encourage you to think of
making plots in this stage not just as a picture, but as experiments that test hypotheses
about your system. Sometimes those hypotheses might be as simple as “Is this signal
changing, or is it just noise?” or “I think this is the range over which some function
varies in an interesting way.” Often, however, we should aim for more. We should
let our hypotheses guide our plotting choices: What functional form do I expect the
data to take? Given that expectation, should we make our axes linearly scaled, or
make them logarithmic? Would plotting a transformed version of the data be more
revealing?
The real power of using these visualizations to explore data comes when you artic-
ulate your hypothesis before you generate the plot. Based on your understanding
and how you plan to display a plot, what should it look like? If the plot matches
your expectations, great – some part of your understanding gains credence. But if
it surprises you, that’s often even better: it might point to an opportunity to learn
something interesting!

Taking that comment to heart, we should be honest: Fig. D.2 is a poor hypothesis. It has
no thoughts about the range of the variables, or how the answer depends on them. It is purely
exploratory. Sometimes this is okay, but we can usually do better. Figure D.3 is a step in the
right direction – far from perfect, but better.
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Figure D.3: Difference between 𝜋 and its simple Monte Carlo estimate vs the product of the
number of points (𝑁) and the number of trials averaged over (𝑀). Notice, also, that Makie let’s
us easily customize the aesthetics of our plots. Please don’t pick tick mark label fonts and axis
label fonts that clash as much as they do here.

D.4 Performance and profiling
Alongside writing code that is robust (correct) and expressive (clear), we sometimes need our
code to be performant (fast). This adds yet another dimension to what wemight mean when we
say we are trying to write “good” code. Context here is absolutely crucial: performance doesn’t
always matter, and even when it does only a small amount of code might actually need to be
optimized. For one-off scripts, initialization routines for other numerically intensive tasks, or
parts of your code that already run fast enough, prioritizing clarity over performance is often
the better approach. When performance does matter – perhaps you expect your simulation to
take weeks to run, or you know you have a core loop that will execute a billion times – though,
follow the golden rule:

The golden rule of optimizing code

When optimizing code, don’t guess.Measure!
Our intuition about where code spends its time is often wrong, and what is and isn’t
performant might even change from one year’s version of the compiler to the next.
Thus, if you are concerned with how fast your code is running, measure it. Only
after you have identified hot-spots in your code should you dive in and think about
spending time optimizing it.

Before we learn how to make those measurements, let’s understand the core principle be-
hind Julia’s speed:when all of the types of values used in computations are stable and predictable,
Julia can generate extremely performant code36. This principle is called “type stability,” but
how can we achieve it?

There are a few general principles we can adopt from the official documentation regard-
ing how we write Julia code. Perhaps the most important is to write code as a composition of
functions. Julia’s compiler is able to perform optimally when it is able to determine the type

36Leading some to say that Julia “walks like Python and runs like C.”

https://docs.julialang.org/en/v1/manual/performance-tips/
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of all values it needs to work in, and the compiler specializes and optimizes code at function
boundaries. For instance, if we pass a global variable as an argument to some function, then at
themoment the function is called the compiler can determine its type (for that specific call) and
generate a specialized version of the function tailored to that type – this kind of specialization
is a core part of how Julia achieves high performance. On the other hand, if we directly use
a global variable from within a function without passing it as an argument, Julia’s compiler
must be extremely conservative – the type of that variable might change at any moment from
an Int64 to a String to a Vector, and so the compiler needs to generate a version of the function
that can handle Any value. This typically leads to slow code.

If you do need to use global variables from within a function, it usually makes sense (both
in the logical structure of your code and for performance reasons) to declare them explicitly
as constants. For instance, something like the following will let you define a global value and
also let the compiler optimize functions that use it:

julia> const fineStructureConstant = 0.0072923525643;

Functions should consistently return values of the same type37, and within functions you
should try not to change the type of variables.

Another important general practice we’ve already seen is to use type annotations to make
sure that all fields in the definition of struct are concrete types. As mentioned earlier, this
ensures that the composite type can be efficiently laid out in memory, and it also means that
the compiler will definitively know the type of all fields within the structure.

D.4.1 Profiling
When you want to move beyond those general principles (and the other more specialized
performance tips from the Julia documentation), Julia has excellent tools for actuallymeasuring
performance. The standard for easy and reliable benchmarking is the BenchmarkTools.jl
package, which we set up when we first installed Julia. It provides convenient macros for
measuring code: for instance you can prepend a “@btime” to a function call38 in the REPL
to get two important pieces of information: the mean time to execute that function and the
number and amount of memory allocations on the heap (which take time to both allocate and
deallocate, and can interrupt the flow of computation) that that function needed to make. A
typical result might look something like:

julia> @btime estimatePi(100000,10);

88.812 ms (6000032 allocations: 236.51MiB)

37More specifically,methods should return a consistent type for specific input types. We’ll see what the distinc-
tion I’m making here means in Appendix E.

38We saw our first macro, printf, in Appendix A, and here we see another one. Here the code transformation
is probably even more clear: the macro is generating a bunch of code that wraps around the function we are
calling, and that new code is both running the original function many times and also keeping track of timing
information

https://docs.julialang.org/en/v1/devdocs/gc/
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These results come from running the same code multiple times to get stable results, and you
can get the full distribution of the timing results by using instead the @benchmarkmacro.

To be honest, I don’t really care about optimizing a function that takes a handful of mil-
liseconds to execute and that I don’t plan to call all that many times in my life. But if I did care,
or if I was more serious about using this method to estimate 𝜋, I might think to myself that
that seems like a large number of memory allocations. And indeed, the sequence of functions
that we used was repeatedly allocating memory for the array of points in every trial, and also
allocating memory for random pairs of points to fill those arrays. Without too much work we
can improve things a little:

# Convention: the mutated argument goes first

function generatePoint!(point,L)

point[1] = rand(Float64) *L -L/2.

point[2] = rand(Float64) *L -L/2.

end

# perform the same logic, but pre-allocating the arrays

function estimatePiInPlace(n,trials)

#pre-allocate arrays

currentTrial = [Vector{Float64}(undef, 2) for i in 1:n]

data = Vector{Float64}(undef,trials)

for i in 1:trials

for j in 1:n

generatePoint!(currentTrial[j],2.0)

end

data[i] = 4.0*fractionInUnitCircle(currentTrial)

end

return (mean(data),var(data))

end

This makes the function allocate less memory and run in about half of the time (on my laptop)
compared to the estimatePi function we had earlier.

In addition to these direct timing and allocation benchmarks, Julia has additional tools
(like Profile, or the JET.jl package) that let you analyze your code’s performance, look for
hotspots, debug, look for type instabilities, etc. I’m sure, if we wanted, we could do even better
than what we did above! But at that point, we should probably start asking ourselves some
higher-level questions about what we are trying to achieve. Could a different Monte Carlo
method converge to the answer faster, rather than throwing more computational power or
code-optimization time at thismethod? Could a non-Monte Carlo method be even better39?

39You bet!

https://docs.julialang.org/en/v1/stdlib/Profile/#Profile.@profile
https://github.com/aviatesk/JET.jl


Appendix E

Modules, parametric types, and multiple
dispatch

Maybe you accepted “Oh, sure – let’s just use a random number generator” or maybe you
thought “Wait – ‘Random’ numbers on a computer?! Surely that’s even blacker magic than
just calling a trig function!” In this chapter we’ll implement a version of calculating 𝜋 that just
involves counting the number of collisions in a simulation of a physical system.

Along the way we’ll tackle a final set of important topics in Julia. It’s remarkable that
Julia gives us the efficiency it does while feeling like an easy-to-code scripting language in
our examples above, but what really makes the language sing? Below we’ll learn about Julia’s
system for organizing code (and its excellent packagemanagement system), how its type system
facilitates powerful generic programming patterns, and how its implementation of multiple
dispatch gives us tremendous power in writing well-organized yet flexible programs. These
topics could each easily deserve their own chapter, so this might feel like a major ramp-up in
information density. But don’t worry – we’ll digest these sections in chunks, and the structured
Problems will hopefully help guide you through the material!

E.1 Environments
Julia has a fantastic system of package management, easily allowing you to pull in powerful
collections of code that people in the community have written. We used the REPL’s package
mode to add a small number of these packages to our default environment; perhaps (especially
if you have not yet worked onmultiple projects that invoked different dependencies) you found
yourself wondering “Why not just always add packages to the default environment? Is it really
worth bothering about multiple environments?”

Story time!

Let’s imagine that at some point you decide that your Monte Carlo estimation
of 𝜋 could benefit from a higher-quality source of randomness than Julia’s built-
in rand() function. You find a promising package another researcher wrote:
SweetRNGSuite.jl. You ]add SweetRNGSuite to your default environment, which

40

https://en.wikipedia.org/wiki/Generic_programming
https://en.wikipedia.org/wiki/Multiple_dispatch
https://en.wikipedia.org/wiki/Multiple_dispatch
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installs v2.3 of the package, and everything works beautifully. You write up your
findings and send a paper detailing your exploration of 𝜋 to a journal – fame and
fortune await!
While waiting for the referee reports to come back, you work on a different project
that, at some point, uses some dynamic Hamiltonian Monte Carlo to perform non-
linear fits to data and extract model parameters. Some time into your work you find
a robust package, FancyHMC.jl, that will do this for you, and you add it to your de-
fault environment. Unbeknownst to you, this package also uses the SweetRNGSuite
package – it requires the newly released v2.6 of that RNG suite, and the package
manager updates SweetRNGSuite to this latest version.
Your HMC project is going well, although some odd things crop up every time
you try to run your older 𝜋-estimate code: you still get results that are reasonable,
but the actual numbers are no longer the same! (It turns out that the authors of
the SweetRNGSuite package changed the behavior of their functions so that they
default to using a random seed rather than a fixed seeda. Like many packages, it was
using Semantic versioning, but sadly not everyone has the same definition of what
constitutes a breaking change.) You’re a little bit concerned – what if the referees
are not able to reproduce your results with the code you made available? – but you
try not to worry too much.
You then realize that you need to compute some numerical integrals – you defi-
nitely do not want to implement some of the sophisticated techniques to accurately
compute integrals of complicated function, handle integrable singularites, etc –
and find a robust, community-approved VersatileIntegration.jl package that
implements many different approaches to evaluating definite integrals. You ]add

VersatileIntegration to your default environment, but – disaster! It turns out
that the VersatileIntegration implements a Monte Carlo method for computing
integrals – very useful for high-dimensional integration! – but the package requires
a SweetRNGSuite version in the v1.x series. The FancyHMC package, on the other
hand, relies on the behavior in the v2.x series of releases. The package manager
cannot satisfy all of the constraints, and simply refuses to add the integration pack-
age. This is, arguably, better than installing it and having other things break, but it
doesn’t help the fact that you’re stuck.
Welcome to dependency hell, newest resident: you!

aWe’ll learn much more about all of the subtleties of generating “random” numbers on a com-
puter in Module ??!

Fortunately, Julia makes working with different environments extremely easy, and its pack-
age manager is really one of its strengths. The guiding principle is to keep your project depen-
dencies isolated. To achieve this, the first thing we should do is keep the default environment as
light as possible (i.e., adding only the bare minimum to it). General development tools that you
use across all projects (like Revise and BenchmarkTools), especially those not directly called
within your project code, are often conveniently placed in the default environment. Youmight
also consider adding domain-specific packages, if they are really of the type that you plan to
include in everything you do. Something like a plotting package is arguably another reasonable

https://semver.org/
https://xkcd.com/1987/
https://pkgdocs.julialang.org/v1/
https://pkgdocs.julialang.org/v1/
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choice, although these bring in so many indirect dependencies that you might start to worry a
little bit (an alternative: make a dedicated “plotting” local environment! You can manage pack-
ages (add, remove, update) within any active environment, so even if you’ve already added
such packages to the default environment you can go back and put them instead in a different
local environment!).

Basically everything else, though, should be added to local environments as you go. The
simplest way to do this is to launch Julia from the directory where you have some project you
want to start working on40 and type “]activate .”. This will tell the package manager to set
the current primary environment to the current directory – either creating a new environment
there if it doesn’t exist or loading information about one that does. (you can, of course, specify
a different target by replacing the dot with a different path). You will see the package manager
prompt change accordingly. Now if you add a package, say, ]add Symbolics two things will
happen. First, the package manager will get to work, installing a bunch of dependencies and
pre-compiling various functions. Second, youwill find two new files in the directory you started
from: “Manifest.toml” and “Project.toml”. The “Project” contains general information about
the package and its direct (but not indirect) dependencies. The “Manifest” contains the exact
versions of all packages you added and the packages indirectly installed as dependencies of
those packages – this is a crucial tool in being able to reproduce exact behavior of your code.

As you might expect me to say by now, the documentation for the package manager is
excellent, and you should look there for more details. Two quick things I want to point out,
though: First, you can layer (“stack”) environments on top of each other, and anything in a
base layer will be available in an environment that sits on top of it. This includes, by default, the
default environment, which is a base layer for any other environment you define. This is why
you should keep the default environment clean, mostly just populating it with tools you use
for development. Second, in addition to being trivial to create and activate, local environments
are cheap. If you have multiple local environments that use the same versions of the same
packages, the package manager won’t install and maintain multiple identical versions. On the
other hand, if different environments need different versions of the same package, everything
gets taken care of for you.

E.2 Modules
Up to now we’ve been using a “Revise”-based workflow as we modified individual files and
invoked the functions they defined from the REPL. As we write larger and larger projects, it
makes sense to organize our code in a way that is more structured, more maintainable, and
more easily shared with others. The primary patterns that Julia gives us, here, are to organize
our work into modules and packages. A module acts as a namespace (and defines its own
“global” scope – see below!), and can be used to organize code and prevent naming conflicts.
Inside of a module you can define custom structs and functions and constants and not worry
about naming conflicts with other people’s code (an important consideration given what I
know will be the temptation to call one of your functions “f(x)”). A package is a distributable
collection of Julia code (which will play nicely with the package manager), and it usually

40Alternately, from the commandline you can start Julia with a specific environment by pointing to its path:
julia --project=pathToProject

https://pkgdocs.julialang.org/v1/
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consists of one (or a few) module bundled together with some metadata about the package’s
version information, its dependencies, etc.

Declaring amodule is as easy as wrapping whatever you want to in a module MyModule ...

end block of code. When a module exists because you installed its associated package we’ve
already seen that we can load it by doing something like

julia> using ModuleName

If you’ve written MyModule in a local file you can execute include("MyModule.jl") to make
the module known in your current session and then use things it defines by accessing through
the namespace. For instance:

julia> include("MyModule.jl")

julia> MyModule.amazingFunctionDefinedInMyModule()

Note that include() evaluates the file contents in the current scope (here, the scope of the
REPL), whereas import/using typically interact with Julia’s package loading path41

A nice workflow to switch to once includet("myfile.jl") is insufficient involves defin-
ingmodules within packages. The official recommendation is to use the PkgTemplates package
to do this for you – it can handle relatively complicated scenarios (for instance, in which you
want to set up a package with test coverage and documentation and GitHub hosting out of the
box). For our purposes, though, let’s learn about using the built-in package manager to set up
a minimal local package for us to work with.

Event-driven molecular dynamics

In this section we’re ultimately going to use – bizarrely enough – “event-driven
molecular dynamics” (EDMD) [4] to estimate the value of 𝜋. EDMD is an alternative
to standard molecular dynamics (something we’ll spend much more time on in
Module ??) – it simulates a physical system by jumping forward in time from the
instant of one collision to the instant of the next. It is a great representation of a
kind of billiard-ball model of particles interacting with each other.
The basic idea is that in between collisions the particles experience no interactions
and, hence, move at constant velocity. Given that, at any moment in the simulation
you can calculate when the next collision will occur, advance the entire system
forward in time to that moment, calculate what happens in the collision process,
and then calculate when the next collision will occur.

In preparation for writing an EDMD simulation, let’s set up a new package. Starting from
an empty base directory, we launch Julia and execute the following two commands:

41The ]activate . command, for instance, modifies this path for the active project, allowing Julia to locate
its modules.

https://docs.julialang.org/en/v1/manual/environment-variables/
https://github.com/JuliaCI/PkgTemplates.jl
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julia> import Pkg

julia> Pkg.generate("EventDrivenMolecularDynamics")

Generating project EventDrivenMolecularDynamics...

You will get the following42 directory and file structure generated:

$ tree

./

└── EventDrivenMolecularDynamics/

├── Project.toml

└── src/

└── EventDrivenMolecularDynamics.jl

In this skeletal template we have a Project file comes pre-populated with some basic informa-
tion, and a .jl filewhose namematches the package name andwhich just defines a placeholder
function. Here’s what that file looks like (with some additional comments indicating what it
will look like eventually).

# EventDrivenMolecularDynamics.jl

module EventDrivenMolecularDynamics

# we'll add export, using, and import statements here. E.g:

# using StaticArrays

greet() = print("Hello World!") # this line comes from the template

# For small packages we can fit everything in this file.

# For larger packages, we'll add more files to the package and

# include them here. E.g.:

# include("elasticCollisions.jl")

# include("eventQueueHandler.jl")

end # module EventDrivenMolecularDynamics

Our workflow for building this package up from its humble beginnings to our eventual goal
will be the following. We’ll navigate to the root of this directory43, start Julia, activate a local
environment with “]activate .” and import44 our module. The functions in the package are
now available to us using the module’s namespace, for instance:

julia> import EventDrivenMolecularDynamics

After which we could do:

42Mimicking the output of the tree Linux utility.
43i.e., cd /path/to/EventDrivenMolecularDynamics
44We could also use using instead of import. If we export-ed a list of names in our module then bring the

package into our session with using would let us access names from the module without the namespace-dot
syntax.

https://linux.die.net/man/1/tree
https://docs.julialang.org/en/v1/base/base/#export
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julia> EventDrivenMolecularDynamics.greet()

Hello world!

Since we configured Revise to be used automatically, we can start directly working in the
REPL and separately on the files in our package simultaneously: changes in the files included
by the module will be tracked and updated automatically, just like when we earlier used the
includet() function.

The core workflow

In case you didn’t quite catch that, here is the core workflow for a package:
1. Navigate to the directory of the project you’re working on.
2. Start the Julia REPL, and start using Revisea.
3. ] activate .

4. import NameOfYourPackage

5. Run some functions in the REPL, figure out what you need to change or do.
6. Write or modify source code in your package.
7. Go back to step 5 and iterate until done.
aOr configure Julia to do that on startup

As a first step, let’s add a dependency to our project. Perhaps for anunderlying data typewe’ll
use a “static array” – which we can use as a data structure containing a fixed, known number
of elements. When we run ]add StaticArrays we can see that the package management
prompt correctly identifies the new local environment; after the package has been added we
can see that the Project file has been updated and a new Manifest file has been created.

E.2.1 Scopes in Julia
We’ve been using “scope” a lot recently, so let’s briefly talk about how scope works in Julia. In
programming, the scope of a name (like the name of a variable, or of a function) is just the
region of code where it is “visible” and can be used. Julia uses lexical scoping, which means
that scope is completely determined by the organization of the source code45. The need for
different scopes is natural in the context of writing ever larger programs.We often want “inner,”
more specialized parts of our code (like a function, or the body of a loop) to be able to see the
broader context of an “outer” scope. But at the same time, we want encapsulation: we don’t
want an outer scope to be accidentally changed by what happens inside a function, nor do we
want two separate functions to interfere with each other just because they both happen to use
“x” as a variable name.

Julia organizes scope fairly naturally, and it defines two different flavors of scope: global
and local. A global scope is just the outermost scope within any self-contained piece of code.

45This is in contrast with dynamic scoping, in which scope is determined by the current state of the program
while running. Dynamic scoping is uncommon, but is used in things like bash or LaTeX.

https://en.wikipedia.org/wiki/Scope_(computer_science)
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Crucially, “global” in Julia does not mean “universal to the whole program!” Instead, each
module defines an independent global scope, and there is a separate global scope (called Main)
that Julia sets as the currently active module when it starts. Let’s define the following:

julia> x = "A name in Main's global scope";

julia> module MyModule

x = "A variable in MyModule's global scope";

end

We can then explore how these global scopes work:

julia> println(x)

"A name in Main's global scope"

julia> println(Main.x)

"A name in Main's global scope"

julia> println(MyModule.x)

"A name in MyModule's global scope"

In the above, we see that we can define a global scope (there, MyModule) within another global
scope, but those scopes act as independent outermost scopes. In contrast to this are local scopes,
which act as nested “workspaces” for names. In Julia things the primary constructs that create
local scopes are functions, for and while loops, array comprehensions, and let blocks.

Now, what are the rules for how scopes interact? The fundamental rule is that inner scopes
can see names from their outer scopes: a function can see the global variables of the modules
it’s defined in, a loop inside a function can see that function’s local variables, and so on. Given
this rule, what happens if you write something like “x = 13”? In a local scope, if x is already
a local variable, that existing variable gets the assignment. If x is not already a local variable,
then a new local variable of that name is created and it gets the assignment. Similarly, if you
are in a global scope, this will either create a new global variable of that name (if it doesn’t
already exist) and assign it a value or just assign the value to the existing global.

So far, easy enough. If you are in a local scope and there is a global variable of that name
there can be some subtleties. If you want to modify a global variable from within a local scope
you can be unambiguous about this by using the global keyword. Sometimes, though, espe-
cially when working in the REPL, you often want tomodify global variables without decorating
your REPL code with this extra keyword46 As an interactive convenience, Julia has a notion of
“hard” and “soft” local scopes, and when working interactively, soft local scopes will change
global variables rather than making a new local variable if a global variable of the name you’re
trying to use exists.

46Perhaps more importantly, not needing to write things like global x = ...makes it easier to debug code
you might be working on by pasting it from a file into the REPL.
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Finally, there are some rules about where in your code you are allowed to define different
scopes. For instance: modules and structs can each only be defined within a global scope
themselves, whereas functions, loops, and comprehensions can be defined in either global or
local scopes. As a simple pair of examples, that means you are allowed to define a function
inside another function, but are not to define a convenient struct inside a function. The details
are a bit involved – and you should definitely read the manual’s scoping section to get all of
them – but the general principle should be fairly intuitive. If you want to sidestep nearly all of
the complexities (and also follow good code practices), consider this:

Best practices for scope (and Julia code in general)

Organize your projects into modules, keep the logic of your code inside of functions,
and have functions communicate only through their arguments and return values
(rather than by reading and modifying global variables).

E.3 Building typehierarchies: parametric andabstract types

E.3.1 Parametric composite types
Back in Appendix C.3 we defined a “ParticlePosition” mutable structure which held three
Float64 values. What if we wanted to use a different representation of a floating point number
(perhaps less precise, so that our code would run faster), or to have the positions be integers
(perhaps because we only wanted to allow positions on a cubic lattice)? Do we have to define a
different “ParticlePositionInt64” or the like for each new primitive type we want to use?
No! Julia lets us define parametric types – types that take parameters – so that we can define
an entire family of types all at once. The syntax for doing so looks like this:

mutable struct ParticlePosition{T}

x::T

y::T

z::T

end

Here “T” represents any type we want. Having defined this type we could go to the REPL and
do something like the following:

julia> a = ParticlePosition{Int32}(3,2,1);

julia> b = ParticlePosition{Float64}(1.5,2.5,3.5);

julia> a.x + b.y

5.5

In this example we’ve explicitly written the type of ParticlePosition we want, but note that Julia
can often infer type parameters from the arguments we pass to the constructor. In this case, we

https://docs.julialang.org/en/v1/manual/variables-and-scoping/
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could have written a = ParticlePosition(3,2,1) and used typeof to determine that Julia
had created a ParticlePosition{Int64} for us. The power here, as we’re about to see, isn’t
just the flexibility for this one random struct, but that we can now write functions that operate
on this struct without knowing what T is. Julia will create fast, specialized versions of these
functions automatically – this is a cornerstone of writing reusable and efficient generic code
in Julia.

Parametric types are actually already familiar to us – it’s preciselywhat a type like Vector{Int64}
is, for instance – and Julia lets us build up our own mutable or immutable parametric types as
we desire. Not only can a parameter be a type, as above, but it can also be a value of a type. For
instance: we are going to want our EDMD simulation to be able to handle collisions between
objects not just in two dimensions but also in three dimensions. Do we really have to define
a ParticlePosition2D and a ParticlePosition3D? Again, no! Let’s define a “particle” as
something that has a position and a mass; rather than hard-coding the dimension of space,
we’ll let D parameterize the dimension of space. Using the StaticArrays package, our structure
might look like:

struct Particle{D,T}

position::SVector{D,T}

velocity::SVector{D,T}

mass::Float64

end

We could construct a stationary particle at some location with unit mass as follows47:

julia> a = Particle{3,Float64}((1.,2.1,3.),(0.,0.,0.),1.);

E.3.2 Abstract types and subtyping
Earlier we referred to abstract types as nodes in the type hierarchy; Julia gives us the power
to extend its type hierarchy arbitrarily, and that includes creating new abstract types. This can
be extremely useful in organizing related concrete types that we might want to create. We
could, for instance, implement a taxonomic hierarchy of life by representing kingdoms, orders,
clades, and so on by building up an abstract type tree, and then representing specific species as
the concrete types that could actually be a value. This involves combining the new abstract

keyword and the subtype operator48, <:, like so:

abstract type AbstractAnimal end

""" A clade of "lizard-faced" amniotes"""

abstract type Sauropsida <: AbstractAnimal end

""" A crown group of "ruling reptiles" """

abstract type Archosauria <: Sauropsida end

47There are some important performance-related implications to using values rather than types as parameters.
The StaticArrays package handles this issue, and is already well optimized for working with vectors and arrays
with small fixed size. As indicated in the link you can in general still write highly performant code while using
values as parameters, but you have to do some extra work to make sure the compiler can infer the types being
operated on at all times.

48Which you can read in your head in these examples as “X is a subgroup of Y.”

https://en.wikipedia.org/wiki/Order_(biology)
https://docs.julialang.org/en/v1/manual/performance-tips/#man-performance-value-type
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""" A concrete Archosaur (skipping a division)"""

struct SaltwaterCrocodile <: Archosauria

name::String

numberOfTeeth::BigInt

end

""" Another concrete Archosaur"""

struct BeeHummingbird <: Archosauria

name::String

lengthInMillimeters::Float64

end

Unlike in some other languages where classes can inherit member functions and variables from
other classes, Julia’s structs (concrete types) cannot be subtypes of other structs. Instead, a
struct can only be a direct subtype of an abstract type. Thus, for better and for worse, there
are no concrete Circle structures that are subtypes of Ellipse structures.

How might we use these ideas in the context of our EDMD simulation? Let’s imagine that
we’ll be working with “Particles” as we’ve already defined them – things that can move
around and bounce off of things – but also “Obstacles” of different sorts. These are meant
to represent stationary objects that particles will be able to bounce off of, but which do not
themselves move around or interact with other obstacles. We want to be able to define in our
simulation a Vector of Particles and a Vector of Obstacles, but we’ll probably need different
properties and rules for different obstacles. For instance, a flat wall can be defined by a surface
normal and a point on the plane (i.e., two SVector{D,T} values), whereas a spherical obstacle
can be defined by the position of its center and its radius. Rather than having all obstacles
carry around irrelevant or redundant values just so that we can describe every possible flavor
of obstacle we might come up with now or in the future, we’ll harness the power of Julia’s
extensible type hierarchy to declare parametric versions of a new abstract type and concrete
types that are subtypes of that abstract type.

abstract type AbstractObstacle{D,T} end

struct Hyperplane{D,T} <: AbstractObstacle{D,T}

normalVector::SVector{D,T}

pointOnPlane::SVector{D,T}

end

struct SphericalObstacle{D,T} <: AbstractObstacle{D,T}

center::SVector{D,T}

radius::T

end

Having done this, we can now easily create a Vector{AbstractObstacle{D,T}} (for specific
parameters, like Vector{AbstractObstacle{2,Float64}}) whose elements can be any kind
of concrete obstacle subtype that matches those parameters. This is crucial for writing generic
functions that can operate on any obstacle type.

Creating and using type hierarchies

Abstract type hierarchies like the animal one above might be cute (?), but just be-
cause we can create an extensive “A is a B is a C is a...” classification doesn’t mean

https://en.wikipedia.org/wiki/Circle%E2%80%93ellipse_problem
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that we should! The primary power of abstract types in Julia is to define a common
set of behaviors (an interface) that enables multiple dispatch – this allows us to write
generic code that behaves differently for different concrete types, as we’ll see next.

E.4 Multiple dispatch

We now can declare vectors of abstract obstacles whose elements can be one of a number of
concrete obstacle types. The way a particle interacts with an obstacle depends on what type
of obstacle it is, so how much work is it going to be for us to call the correct method given
any specific interacting pair (which might involve two particles, or a particle and a obstacle)?
Thanks to one of the defining features of Julia,multiple dispatch, the answer is “none!”

“Dispatch” is the term for how at run time a program selects what specific method (i.e.,
implementation of a function) to execute based on the types, numbers, and/or values of argu-
ments passed to the function call. In a language like C, youwrite a functionwith a unique name
and some number of typed arguments, and that’s what gets called – end of story (in very non-
standard terminology, we might call this “zero dispatch”). “Static dispatch” (or compile-time
method resolution) is a characteristic of a language like C++ that has function overloading,
allowing you to give the same name to different functions as long as they have different num-
bers or types of their arguments. “Single dispatch” was a breakthrough in traditional object-
oriented languages, allowing you to dispatch to different functions depending on the type of
one of the arguments. This is done in C++-like49 languages by defining classes with meth-
ods, and using a syntax that elevates one argument over the others. This single-dispatch style,
common in traditional OO languages, often leads to syntax like abacus.multiply(2,12) and
fingers.multiply(2,12) – heremethod selection depends on the type of the object preceding
the dot.

In a language with multiple dispatch like Julia, the specific method chosen to execute is
determined by the combination of the runtime types of all of the arguments. This allows you to
write methods that look like multiply(A::algorithm, x::Number, y::Number). Multiple
dispatch is one of the solutions to the so-called expression problem, and it has been argued it is
one of the driving features that created a vibrant ecosystem of shared, reusable code in the Julia
community. Given the kind of type system Julia possesses, there need to be rules for choosing
which method not only matches but best matches a particular call. Julia generally does the
thing that you expect: it selects themost specialized50 method that matches the argument list.

49For which there is, interestingly, apparently a long history of wishing the language had been written with
multiple dispatch baked in.

50Defining “most specialized” heuristically as “farthest from the root of the type tree”. Julia has complex rules
to handle exactly what methods will be called when specializing on multiple types, how to handle tie-breakers
between specializations, and when it will complain that something is so ambiguous that you, the coder, must be
more explicit in which method to call.

https://en.wikipedia.org/wiki/Multiple_dispatch
https://en.wikipedia.org/wiki/Expression_problem
https://www.youtube.com/watch?v=kc9HwsxE1OY
https://jll63.github.io/Boost.OpenMethod/
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Specializing on methods?

Double check your understanding – what does the above paragraph imply
about which of the methods add(x::Number,y::Number) and add(x::Signed,

y::signed) and add(x::Int64,y::Int64) that you’ve defined would be called
as you try to add different values? How does this relate to what we did when we
extended the Base - binary subtraction operator to work with PolygonVertex types
in Appendix C.3?

In the context of our EDMD simulation, we can write an elasticCollision function
that both takes and returns two values, where the return values correspond to the state of the
argument values after a purely elastic collision. By writing multiplemethods for this function
that specialize on the types of the arguments, we can use Julia’s multiple dispatch to handle the
business of calling the right method regardless of what combination of particles and obstacles
we pass it. This might look something like:

function elasticCollision(p1::Particle{D,T}, p2::Particle{D,T}) where {D,T}

#logic to define new Particles post-collision...

#newParticle1=...

#newParticle2=...

return newParticle1,newParticle2

end

"""when a particle and an obstacle collide, the particle reverses its

velocity"""

function elasticCollision(p::Particle{D,T}, obstacle::AbstractObstacle{D,T})

where {D,T}

newVelocity = -p.velocity

newParticle = Particle{D,T}(p.position,newVelocity,p.mass,p.radius)

return newParticle,obstacle

end

Notice that we’re not modifying the Particle or AbstractObstacle types when we add these
collision methods; we’re defining new methods that are external to those structs. This means
that different parts of a system, or even different packages, can independently extend how
types interact without needing to change the original type definitions – this is key aspect of
what makes Julia so composable, and what we mean when we say that multiple dispatch is a
solution to the expression problem.

In the above context, by theway, the “where” keyword part of themethod declarationmakes
the parameters of the argument types (like D and T) available as parameters for the method itself.
This allows Julia to compile a specialized version of themethod for that particular combination
of concrete types. The “where” keyword can be used not just for parametric types, and can also
be used to specify constraints you want to hold, for instance in a method declaration like
function foo(x::T, y::T) where {T <:Number}.

Notice, also, that we don’t need to specialize the methods more than necessary. In this case,
if we wanted particles to perfectly reflect off of all obstacles (not, indeed, how a collision with a
sphere would work!) we could write the method signature as above. If we wanted to handle the
SphericalObstacle case separately and correctly, we could keep the above method and add an
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additional specialization on o::SphericalObstacle. It’s worth remembering that the order
of the arguments matters, so here for completeness we’ll make sure that we correctly handle
the case of passing an obstacle and then a particle:

"""For a call with o first, just call the method with the (p,o) order"""

function elasticCollision(obstacle::AbstractObstacle{D,T}, p::Particle{D,T})

where {D,T}

newParticle, o = elasticCollision(p,obstacle)

return o,newParticle

end

Actually implementing our EDMD simulation now involves a few further primary steps.
The first, of course, is to actually handle the logic of collisions between different types. Next,
we should figure out an efficient way of calculating when the next collision between any pair of
types might be (including, for instance, the option of returning Inf if the two types would never
collide given their current positions and velocities). For efficiency we could expand this into
the population of a data structure – perhaps a PriorityQueue from the DataStructures.jl
package – that keeps track of upcoming collision events. This would allow us to efficiently
advance the system from one collision to the next. Finally we would add a way of saving data,
or of visualizing the results of these simulations. In the Problems you’ll do some of this work
yourself, but see the course git repo for a motivating movie I made using GLMakie that lets you
interactively add colliding particles moving on an ergodic-billiards-like table!

E.5 Hello, 𝜋! (Method 5: Counting collisions)
If you haven’t seen this calculation51 before, you might be thinking to yourself, “Daniel, that’s
all well and good, but what does any of this EDMD business or ‘counting collisions’ have to
do with how we’ll calculate 𝜋?!” Indeed, this first time I saw Ref. [5] I laughed out loud – not
something that happens very often to me while reading the physics literature. Before you go
and read that paper I’ll describe the set up (also depicted in Fig. E.1), and you should spend
some time thinking about why this might even be tangentially related to 𝜋.

The plan is the following. We’ll set up a system of three objects in one dimension. At the
origin is an immovable wall – imagine that it has effectively infinite mass. Somewhere far to
the right of the wall is a particle of mass 𝑚2 moving to the left with velocity 𝑣0. In between
this particle and the wall is an initially stationary particle of mass𝑚1. The particles move in a
frictionless environment (or perhaps they’re flying around in the vacuum of deep space), and
all collisions are perfectly elastic: collisions between the two particles conserve both energy and
momentum, and collisions with the infinitely massive wall just flip the sign of the colliding
particle’s velocity vector.

We’llwrite a function piPoolInitialization(massRatio) thatwill accept the ratio𝑚2/𝑚1
and initialize a System in the configuration just described, working in units where, say, |𝑣0| = 1.
Assuming we’ve written an evolveStep function that takes a system and advances it to the
next time of collision (assuming that there is still a collision that will happen) and returns how
much time had to elapse to do so, we’ll define the following:

51Which is, inarguably, the silliest calculation I know.
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Figure E.1: Our physical setup for calculating 𝜋: an immovable wall (e.g., of infinite mass) is
on the left. In the middle is an initially stationary particle of mass𝑚1. On the right is a particle
of mass𝑚2 moving with initial velocity along the 𝑥 axis towards the middle mass.

mutable struct System{D,T}

particles::Vector{Particle{D,T}}

obstacles::Vector{AbstractObstacle{D,T}}

totalCollisions::Int64

currentTime::Float64

end

function piFromPool(massRatio::Float64)

s::System = poolPiInitialization(massRatio)

timeToPreviousCollision = 0

while(timeToPreviousCollision != Inf)

timeToPreviousCollision = evolveStep!(s)

end

return s.totalCollisions

end

What do we expect will happen? If 𝑚1 = 𝑚2 the analysis is straight out of physics 101:
particles 1 and 2 will collide (after which particle 2 will be stationary and particle 1 will have
velocity 𝑣0), then particle 1 and the wall will collide (after which particle 1 will reflect and
move at speed 𝑣0 to the right), and then particles 1 and 2 will collide again (after which particle
1 will be stationary and particle 2 will move with speed 𝑣0 to the right). Nothing interesting
happens after this: particle 2 flies off to infinity, leaving us with three total collisions. Well...
let’s see what happens as we play with the mass ratio:

julia> EventDrivenMolecularDynamics.piFromPool(1.)

3

julia> EventDrivenMolecularDynamics.piFromPool(100.)

31

julia> EventDrivenMolecularDynamics.piFromPool(10000.)

314

julia> EventDrivenMolecularDynamics.piFromPool(1000000.)

3141
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julia> EventDrivenMolecularDynamics.piFromPool(100000000.)

31415

julia> EventDrivenMolecularDynamics.piFromPool(10000000000.)

314159

julia> EventDrivenMolecularDynamics.piFromPool(1e16)

314159265

All we had to do in order to get the first 9 digits of pi was calculate collisions between
particles whose masses differed by a factor of ten quadrillion? You’ve got to be kidding me.

E.6 Additional resources
The concepts and tools we’ve covered will already let us do a tremendous amount – you’re
already equipped to tackle many of the computational challenges we’ll encounter this semester
(and beyond)! However: Julia is an extremely deep and versatile language, and our exploration
has in many ways only scratched the surface (for instance it’s extensive metaprogramming
capabilities and it’s built-in paradigms for parallel and concurrent computing52). For those
looking for a place to start diving deeper, the following are resources that I found useful while
I was learning myself, along with some other highly regarded guides to help continue your
journey.

Core resources and community

• If you haven’t picked up on this yet: the official documentation should be on your must-
read list. It’s comprehensive, authoritative, and the ultimate reference.

• Speaking of community ... the Julia discourse is a central hub for community support,
questions, and discussions. It’s an active and welcoming environment, where questions
often receive strong, detailed, and positive feedback.

• JuliaPackages and the JuliaHub package search page. As you continue your journey, if
you want to find packages that deal with specific problems, or want to see how other peo-
ple write Julia code, these are both great places to browse and search for Julia packages.

Helpful books and in-depth guides

• “Think Julia: How to think like a computer scientist” is a longer book (roughly 300 pages)
which is also available online. I found it only after writingmost of these notes, but a quick
look suggests that it is a very pedagogical and more thorough look at many corners of
Julia than I presented here. It is aimed at students who may not have any programming
experience, and thus also walks more carefully through the fundamentals of coding and
of the Julia language.

52So much so that Julia is one of only a handful of languages – the others that I know about being FORTRAN,
C, and C++ – that have achieved petaflop-scale performance.

https://docs.julialang.org/en/v1/manual/metaprogramming/
https://docs.julialang.org/en/v1/manual/metaprogramming/
https://docs.julialang.org/en/v1/manual/parallel-computing/
https://docs.julialang.org/en/v1/manual/getting-started/
https://discourse.julialang.org/
https://juliapackages.com/
https://juliahub.com/ui/Packages
https://benlauwens.github.io/ThinkJulia.jl/latest/book.html
https://info.juliahub.com/blog/julia-joins-petaflop-club
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• “Practical Julia” is an even longer book, and it seems to be of very high quality. It goes
through the basics quite thoroughly in Part 1, and then dives into applications from
different fields in Part 2.

• A Deep Introduction to Julia for Data Science and Scientific Computing. This workshop
material is targeted at people who already know languages like Python or MATLAB, and
uses an active, problem-based approach to start from the beginning and then go deep
into the Julia language and ecosystem.

Other guides and references

• Modern Julia workflows has a particularly nice explanation of the environment / module
/ package system in Julia, and (as you might expect from the name) strong recommenda-
tions for productive workflows. It also provides guidance on using IDEs like VSCode or
notebook environments such as Jupyter or Pluto, as alternatives or complements to the
text-file-plus-REPL workflow emphasized in these notes.

• Learn Julia the Hard Way has some excellent pedagogical content. It is targeted, in its
words, at “... people who need to get a job done, not computer scientists.”

• julianotes.jl is a collection of explanations and practical tips, frequently distilled from
conversations on the Julia discourse.

• Learn X in Yminutes, where X=Julia, offers a concise “cheat-sheet” – perfect for a quick
reminder of core language syntax.

As we progress through this course I encourage you to learn more, and tell me about par-
ticularly helpful resources you find along the way!

E.7 Confession
I will very occasionally bend the truth in these notes if I feel like there is a strong enough
pedagogical reason, but I’ll always come clean. Back in Appendix A I said that when I first
opened Julia I added one and one together, and then closed the REPL. While true in spirit, the
very first time I opened Julia it wasn’t exactly that smooth; it actually looked more like:

julia> 1+1

2

julia> exit

exit (generic function with 2 methods)

julia> quit

ERROR: UnDefVarError: `quit` not defined in `Main`

https://nostarch.com/practical-julia
https://ucidatascienceinitiative.github.io/IntroToJulia/
https://modernjuliaworkflows.org/
https://scls.gitbooks.io/ljthw/content/
https://m3g.github.io/JuliaNotes.jl/stable/
https://learnxinyminutes.com/julia/
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Suggestion: To exit Julia, use Ctrl-D, or type exit() and press

enter.

Suggestion: check for spelling errors or missing imports.

julia> exit()

It wasn’t exactly my finest moment. But it was an encouraging early indication of how Julia
was going to help make the process of learning it easier!
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